Journal of Computational Physi&§5,764—791 (2002)

®
doi:10.1006/jcph.2001.6973, available online at http://www.idealibrary.col DE &l.

Accuracy and Conservation Properties
of a Three-Dimensional Unstructured
Staggered Mesh Scheme
for Fluid Dynamics

Xing Zhang, David Schmidt, and Blair Perot

University of Massachusetts, Amherst, Massachusetts 01003-2210
E-mail: perot@ecs.umass.edu

Received April 25, 2001; revised November 9, 2001

A three-dimensional unstructured mesh discretization of the rotational from of
the incompressible Navier—Stokes is presented. The method uses novel and highly
efficient algorithms for interpolating the velocity vector and constructing the conven-
tion term. The resulting discretization is shown to conserve mass, kinetic energy, and
vorticity to machine precision both locally and globally. The spatial accuracy of the
method is analyzed and found to be second order on regular meshes and first order
on irregular meshes. The numerical efficiency, accuracy, and conservation properties
of the method are tested on three-dimensional meshes and found to be in agreement
with theory.  © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The staggered mesh discretization referred to in this work is a discretization sche
where pressure and other scalar quantities, such as thermodynamic variables, are s
at cell centers but the velocity vector is distributed to cell faces. Each face stores only
normal component of velocity at that face. Because every three-dimensional cell contair
least four nonparallel faces, the velocity vector can always be recovered from face nor
components. This recovery or interpolation of the velocity vector from the face normal co
ponents is not unique and it is a defining characteristic of various staggered mesh sche
As will be shown in this text, particular interpolations can lead to important properties f
the overall solution method. The primary difficulty of constructing conservation proofs
vector derived quantities, such as vorticity or kinetic energy, is in determining the corr
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A THREE-DIMENSIONAL STAGGERED MESH SCHEME 765

definition (or interpolation) which defines the velocity vector from the primary face norm
components.

Harlow and Welch [1] first described a Cartesian mesh implementation of the stagge
mesh discretization in 1965. Their motivation was primarily the simplicity with which th
incompressibility constraint can be implemented from within this framework. An importa
property of the method, which makes it popular evento this day, is the fact that discretizati
of the incompressible Navier—Stokes equations that are based on this staggering scher
not display spurious pressure modes. No particular treatment of the pressure is require
remove the red/black uncoupling found in colocated finite volume methods or the press
locking found in some finite element and Lagrangian methods. Subsequently, itwas real
that the staggered mesh approach had attractive conservation properties. While mas
momentum conservation are typically imposed explicitly via the discrete equations, Lilly |
showed that Cartesian staggered mesh methods also conserve vorticity (or circulatic
three dimensions) and conserve kinetic energy in the absence of viscosity. Perot [3]
recently shown in a two-dimensional setting that unstructured staggered mesh mett
can also obtain such conservation properties. The conservation properties of a nume
method can be an indication of the methods underlying physical accuracy. As a res
staggered mesh methods are also popular in physically demanding situations such a
direct numerical simulation (DNS) of turbulence [4—6] and the large eddy simultation (LE
of turbulence [7]. The dynamic subgrid scale models used in LES appear to be particul
sensitive to the kinetic energy conserving properties of a numerical method [8], and as s
are a primary motivation for this particular research investigation.

The generalization of staggered mesh methods to unstructured meshes was proy
by Nicolaides [9] and separately by Porshing [10]. The enhanced utility to be gained
using unstructured meshes in complex geometries is obvious. However, the extensic
structured staggered mesh methods to an unstructured mesh setting is more complex t
might first appear. On a Cartesian mesh, cell and face centers are relatively unambigtL
On a three-dimensional unstructured mesh, which is typically a collection of irregu
tetrahedra, numerous possibilities for cell and face centers exist, resulting in a hos
different staggering possibilities. This work will describe a method that uses circumcent
as the defining cell and face locations.

The attractive properties of both the Cartesian and unstructured staggered mesh me
can be traced back to the fundamental mathematical properties of the discrete differe
and averaging operators. The operators have symmetry properties (such as the dis
divergence is the transpose of the discrete gradient), have operator orthogonality prope
(such as the discrete curl of a discrete gradient is always zero), and satisfy discrete ¢
rule identities (such as discrete integration by parts analogs). These mathematical prope
are relatively easy to show in a Cartesian setting. Nicolaides [11] demonstrated how
first two types of properties can be obtained for unstructured meshes through the us
cell circumcenters. Perot [3] has recently shown how chain rule identities for unstructu
staggered mesh methods can be obtained using appropriately defined interpolation sche

This work will analyze the conservation properties and accuracy of a three-dimensic
unstructured staggered mesh scheme. The scheme is described in Section 2. Its conser
properties are analyzed in Section 3, and accuracy is evaluated in Section 4. Numerical
of the accuracy and conservation are presented in Section 5, and a 3D driven cavity prol
is used to test this scheme in Section 6. A discussion of the method and its relationshi
other schemes is found in Section 7.
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2. NUMERICAL DISCRETIZATION

This work focuses on a discretization of the rotational form of the Navier—Stokes eqt
tions. The unstructured staggered mesh discretization can also be applied to other forn
the Navier—Stokes equations, including the much more common divergence form. As sh
in Perot [3], the specific form of the Navier—Stokes equations appears to determine the «
servation properties that can be obtained by the unstructured discretization. Interestir
this is not true of Cartesian staggered mesh methods, where discretizations of the rotati
and divergence forms of the Navier—Stokes equations can be shown to be equivalent.
rotational form of the incompressible Navier—Stokes equations is

a_u + (w x u) —Vpd -V x (vw) (1a)

ot

V.-u=0 (1b)
whereu is the velocity vectorw = V x u is the vorticity, p? = p + %u - u is the specific
dynamic pressure, andis the kinematic viscosity. This particular equation assumes th:
viscosity is constant. Variable viscosity can be represented in the rotational form but the e
term involving second derivatives of viscosity complicates the analysis unnecessarily
will not be treated in this analysis. The rotational form of the Navier—Stokes equations i
mathematically elegant way to view the equations. The convection term acts perpendicul
to the velocity [1 - (w x u) = 0], and the fluid accelerations are now explicitly decompose
into dilatational (pressure) and solenoidal (viscous) parts.

The primary quantity in staggered mesh methods is not the velocity vector, but 1
component of velocity normal to a face. Integrating Eq. (1a) over a cell face and taki
a dot product with the face normal vector (see Fig. 1) produces an exact equation for
evolution of the mass flux) = [, u-ndA

U op

A A¢ dA¢

where Stokes theorem has been used to transform the viscous term from an area int
to a counterclockwise integration around the edges of the face. Counterclockwise in tt
dimensions is defined with respect to the normal vector and the right-hand rule. The ac
orientation of the normal vector (two directions are possible) is arbitrary.

Only the vorticity component along each edge of the face is required for the viscc
term. If we denoteve = w - t¢ to be the component of vorticity along an edge (whgrie
a unit vector pointing along the edge), angdtd be the component of vorticity along an
edge that is orientedounterclockwisavith respect to a particular face, then the viscous
term can be written a5.® %3 L, whereL . is the length of an edge. Note that in
three dimensions, each edge has two possible orientations. It is impossible to force the
orientation to be counterclockwise with respect to all faces that are formed using that ec
For that reason, the edge orientations are taken to be arbitrary with respect to the f:
and any directional dependence is accounted for with the hat (circumflex) notation, wh
translates into a plus or minus sign in the actual code implementation. In two dimensic
all edges point out of the plane of interest and have unit length.
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FIG. 1. (a) Two-dimensional unstructured mesh (thin lines) and its circumcenter dual mesh (bold line
(b) Geometric parameters associated with a 2D face. (c) Three-dimensional mesh cell (thin lines), and a dual
polygon which is perpendicular to one of the edges (bold lines and shaded area). (d) Geometric parameter
their locations for the 3D unstructured mesh.

If pressure is assumed to be located at cell circumcenters, then the pressure term ¢
approximated by—f—:(p‘gz — pd) whereL ; is the distance between the two neighboring
circumcenters and the normal vector points from cell c1 and toward cell c2. The fact t
the pressure term can be written in this very simple form results from one of the me
interesting properties of circumcenters. In particular, the property that a line connect
two neighboring cell circumcenters is always normal to the face it passes through, and
it passes through the circumcenter of that face.

The lines connecting circumcenters form an entirely new mesh, called the circumcel
dual mesh. Many of the important properties of staggered mesh discretization and a
aging operators are a direct result of the local orthogonality of the primary mesh and
circumcenter dual mesh. Note that staggering places different variables on each of t
mutually orthogonal meshes. Cartesian staggered meshes are trivially orthogonal to
dual mesh. In fact they are not just locally orthogonal, they are also globally orthogor
It is this global orthogonality which allows one to prove equivalence of the rotational a
divergence discretizations for Cartesian staggered meshes.

The local orthogonality property of the circumcenter dual mesh has some even m
remarkable consequences than forcing cell centers to be normal to cell faces. It forces
centers to be orthogonal to edges as well. That is, the circumcenters of all the cells wi
common edge (and there can be an arbitrary number) will always lie in a plane, and
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plane will be perpendicular to the edge. One remarkable consequence of this proper
that the vorticity along an edge (required for the viscous term) can be obtained dire
from the normal velocity components at the faces. Even more remarkable is the fact
the convection term can be approximated as

face
edges

/(wxu) ndA=— Zwe eu - (Xe — X}), (33)

whereug is the velocity vector in the plane perpendicular to the exlgis the edge midpoint
position,x} is the midpoint between neighboring cell circumcenters,@id the vorticity
along the edge and oriented counterclockwise to the face normal. Note that the’point
lies on a line perpendicular to the face circumcenter, but not necessarily on the face its
Equation (3a) is not an intuitive approximation. It implies that an average of the prodt
involving only one component of the vorticity and one component of the velocity at tt
edges is able to account for the full effects of the three-dimensional vector cross prod
Locally at each edge this expression represents only half of the cross product. Somel
the large error due to neglecting half the cross product at each edge cancels out whel
average over all faces edges is taken. The derivation of Eq. (3a) is given in Section 4. N
that only the vorticity component along the edge is required in this expression as well, s
an efficient method for determining the velocity vector at the edges can be constructed,
method will be highly efficient. Such an interpolation is in fact available and is given by

edge
faces

—tex—ZULf —X%), (3b)

where A, is the area of the planar polygon formed by connecting all cell circumcente
that surround the edge (see Fig. 1f3)js the tangential vector pointing along the edge,
andU = ffaceu -n¢ d Ais the normal mass flux with the normal oriented counterclockwis
with respect to the edge. This interpolation is also not intuitive, but is formally derived

Section 4. A two-dimensional derivation of the same type of interpolation is presented
Ref. [3]. Interestingly, in matrix form, the summation in Eq. (3b) is the transpose operati
of the summation in Eq. (3a). It should also be pointed out that the resulting interpola
velocity vector at the edges is actually only the velocity in the plane perpendicular to t
edge. The velocity component along the edge cannot be recovered from the neighbc
faces, since the normal velocity does not contain any information in the direction along
edge. However, referring back to Eq. (3a) it is clear that only the velocity in the edge ple
is required for the computation to proceed, and the interpolation given by Eq. (3b) is qt
adequate for our purposes.

In two dimensions, the time derivative can be left just as it appears in Eq. (2), as
change in the face normal velocity. However, it is found that for three-dimensional kine
energy conservation a symmetric “mass matrix” is required for the time derivative tel
which couples it with its nearest neighbors. A discrete kinetic energy can be construc
without using this mass matrix (as in the 2D case), but the resulting discrete kinetic ene
is only a zeroth order accurate approximation to the true kinetic energy on arbitrary thr
dimensional meshes. It would therefore result in a statement of stability but not a ti
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statement of kinetic energy conservation. The mass matrix is constructed by interpola
the normal velocity components to construct a cell velocity vector, and then defining
normal velocity atthe face as the average of the two neighboring cell velocities. The resul
face normal velocity is still first-order accurate on general meshes. Interestingly, this r
normal velocity is identical to the original normal velocity when the mesh is uniform, s
this apparent averaging procesa@diffusive. Formally, the cell velocity is defined to be

cell
1 faces

e = - > (xF°—x)U, 4

whereu, is the velocity vector at the cell cent&f, is the volume is this particular ceﬂ‘,%G
is the position of the center of gravity of the faces surrounding thisxcal,the position of
the cell center, ant) is the mass flux out of the cell. This interpolation, while unintuitive,
is discussed in Ref. [3] and shown to be a first-order approximation on nonuniform mest
The normal mass flux at a face is then g|ver{:*é{/ucl (X§C — Xe1) — Ugz - (X§C — X2)] =
u.m It is clear that this latter approximation is also first order, and is exact if the loc
veI00|ty field is constant between the two cells.
In summary the three-dimensional staggered mesh discretization of the rotational f
of the Navier—Stokes equations is given by

fgce fgce
W L o . " d ~
%t A BeLely - (Xe — X5) = —(p% — pdy) — Z veLe (5a)

cell
faces

Y U=o (5b)

whereU is the mass flux out of the cell in questian, = i yoedeefacey L is the vorticity

component along an edgey “is the vorticity component along an edge and

counterclockwise to the face in question, and the velocity in the edge plane is given
=teX & Sedoe ey | ¢ (xe — X2).

The memory requirements for this method are very low and the computational efficiel
is very high, requiring only a local communication stencil between faces and edges |
faces and cells. To obtain conservation of kinetic energy it is not possible to use upwinc
in this scheme, but upwinding can be included in this type of scheme by changing
effective cell and edge positions in the interpolations.

One critical issue for this methodology is the use of cell circumcenters to define t
dual mesh. On a highly distorted mesh, a cell circumcenter can lie outside its cell. Fc
Delaunay primary mesh, the dual mesh is still guaranteed to be regular even when the r
is highly distorted and the analysis follows through unaltered. Remarkably, the algorith
and analysis still hold for arbitrary meshes as well, but one must be prepared for nege
face lengths and negative edge areas (the dual mesh can become inverted). The real
is not one of implementation but of accuracy. The method is first order but intolerat
inaccurate for arbitrary meshes. All the meshes used in this work are Delaunay, ar
number of effective algorithms exist in the literature to generate Delaunay meshes rapi

Equation (5a) can be interpreted as a discretization of the momentum equation integr
along the two line segments joining the neighboring cell circumcenters and the face ce
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of gravity. The convection and diffusion terms normal to the face are appropriate apprc
mations for these two line segments (even though the segments are not necessarily nc
to the face), because the tangential components of convection and diffusion along each
ment are equal and opposite. In two dimensions, the face circumcenter and center of gr:
are identical and so the line segments are automatically parallel to each other and norn
the face. This is why two-dimensional or uniform three-dimensional unstructured mesl
are significantly simpler than the general three-dimensional case treated in this work.

The computation abe andu} on boundary edges requires that the integration around tt
edge polygon be completed. In both cases, it is the integral of the velocity tangential to
edge and along the boundary that must be specified in order to complete the integra
The tangential velocity component at boundaries is assumed to be known, either explicitl
walls or static inflow conditions, or via extrapolation from the interior for outflow conditions
It is also clear from Eq. (5a) that either the boundary mass flux can be specified, or
boundary flux can be left as an unknown and the boundary pressure specified (both
convective and diffusive terms can be calculated on boundary faces). This choice of spec
pressure is ideal for outflow boundaries. In fact, a potential inflow boundary condition ¢
also be implemented in this framework. It specifies that the vorticity is zero at the inflc
and the dynamic pressure is constant along the boundary.

3. CONSERVATION PROPERTIES

3.1. Conservation of Kinetic Energy

Conservation of kinetic energy is an important property for numerical simulations
turbulence. The cascade of kinetic energy from large scales to smaller scales is one o
defining characteristics of three-dimensional turbulence. Dissipation of energy at the sr
scales sets the rate at which energy transfers down this cascade. Numerical methods
excessive numerical dissipation can alter simulation results even if the numerical dissipa
is only at small scales [8]. This section will show that the proposed method dissipates kin
energy at the correct rate without numerical dissipation. A simpler proof of kinetic ener
conservation in two dimensions can be found in Perot [3]. Conservation of kinetic enel
for distorted 2D Cartesian meshes is presented in Ref. [12].

For an incompressible fluid, the specific kinetic enejgyu can be shown to obey the
following transport equation:

a(ést'u)—i-V~{u<;u-u>}:—V-(pu)+V-(vuxw)—vw~w. (6)
Except for the negative definite sink term involving the product of viscosity and enstropl
the equation is conservative. In the absence of external forces and viscosity, the kir
energy is simply redistributed but not created or destroyed. The discrete system sh
mimic Eq. (6).

To prove strict kinetic energy conservation, the evolution equation for the normal veloc
component (Eg. 5a) must also be discretized in time. A midpoint rule for the discretizati
will be assumed,

face face
u-”*l—u-” Lf edges , . . . edges )
int int ~ 1n+1 ~n+1,
e LS ol i ey = (e~ )~ 5L 3w L
At A¢ As

(7)
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Note that for kinetic energy conservation, the time level of the pressure and of the vortic
in the convection term is not important.

The evolution equation for the discrete kinetic energy is constructed by first mul
plying Eq. (7), the evolution equation for the normal velocity componentJByY/? =
%(U n+1 4 U™ and then summing over faces. The summation over all the faces of
single cell results in a statement of local kinetic energy conservation for that ce
A summation over all faces in the domain results in a statement of global kinetic ene
conservation. Global kinetic energy conservation is also a weak statement of numel
stability because if the kinetic energy is bounded the velocity must also be bounded.

Multiplying by U"*1/2 and summing over faces gives

face
faces faces edges

Z U n+1/2 |nt - |nt Z U n+1/2 L Z (;)eLeUé'nJrl/z - (Xe — X?)

face
faces faces edges

L R
= — Y UM (pl—plh) = DU S T gl AL, ®)

f

The definition ofujy: as a summation of two cell contributions allows us to reformulate th
summation over faces as a summation over cells. The time derivative becomes

cell

faceS( n+1 cells (Ungl Un) faces

Upi ™ — u.”t) — ~
Z in ~ int/ yn+i/2 _ 2: X c/ . } :(X'?G—XC)U”H/Z
Il
— Ee y n+1 un V ul”l+l/2

cells ( n+l Un)

_ZVC E(

cells (un+1)2 %(un)Z'

_ZVC c

Sinceu, is a first-order approximation for the velocity vector in an irregular unstruc
tured mesh cell, it holds that Eq. (9) is a first-order approximation for the change in kine
energy within the cells. If the mesh consists of cells of uniform shape and size, then
approximation becomes second order. In three dimensions, tessellation of space using
form tetrahedra are not possible, so only meshes consisting of uniform pyramids, pris
and hexahedra can achieve formal second-order accuracy. Note however that the first-
errors are related to the nonuniformity of the mesh. If the mesh is relatively smooth, tf
the first-order errors are very small and only dominate when the mesh in highly refined.
practical mesh resolutions and reasonably constructed meshes, the method will appe
be essentially second-order accurate.

In the continuous case the rotational convection term is perpendicular to the velo
vector and doesn’t contribute to the kinetic energy equation. The same behavior should
be true of the discrete equations. To see that this is indeed the case, the summation
faces is recast into a summation over edges, whbleig the normal velocity component

n+1 n
ugtt +up)

)
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oriented counterclockwise with respect to the edge in question:

face

faces L, edges
1/2 ~ 1/2
PITASE-UD SENILLERS
edge
edges faces
— Z wel uin+l/2 Z (Xe — Xf) U n+1/2 (10)

Discrete kinetic energy conservation therefore requiresupt’/2 be perpendicular to
>-°9° %Pk, — x3) zU™Y/2, This is most easily arranged by defining the edge velocity a

edge
faces

L
J_n+1/2 =t x — Z(Xe A Un+1/2 (11)

wheret, is the unit tangential vector pointing along an edge Aads the area of the dual
mesh polygon associated with an edge. It is shown in Section 4 that this is a first-order
proximation for the velocity vector perpendicular to mesh edges (second order on unifc
meshes). This very efficient vector interpolation formula uses only a local communicati
stencil and the normal velocity components.

The pressure term can be recast into a summation over cells

cell boundary
faces cells faces faces
_ Z Un+1/2(p32 . pgl) _ Z pg Z Un+1/2 _ Z Un+1/2 d
boundary
faces . 1
=- > U”+1/2<p+§u-u> , (12)
b

whereU is the normal mass flux (velocity times area) pointing out of the cell in questiol
When using Gauss' divergence theorem it can be seerthat®' “***U is an approxima-
tion for V - uinthe cell. For the incompressible flows of interest in this work, this constrair
will be forced to machine precision zero in order to compute the pressure, and only the cotr
bution from the boundary faces remains. The first part of Eq. (12) is a discrete version of
identity —u - (Vp) = p(V -u) — V - (up). The last equality shows that both the pressure
work term and the advection of kinetic energy arise from the dynamic pressure gradier

The viscous term must be analyzed in two steps. First, the summation over faces is re
as a summation over edges:

face edge
faces edges edges faces

L+ - L+
U n+1/2 -1 n+1/2 L _ vwn+l/2 L U n+1/2 -1 13
B SIS SETECU ST WETH TR

A first-order approximation for the vorticity component along an edge can be obtained
using Stokes’ Curl theorem, = i 3 edge facegj /L\—:. This approximation is second-order
accurate for uniform meshes and is possible because of the mutual orthogonality of
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circumcenter dual mesh. However, the expression for the vorticity must be modified
boundary edges because the faces connected to a boundary edge do not define a col
circuit around the edge as required by Stokes theorem. So at boundary edges we have

edge
faces

~ L
Zuff"'* e (X2 —x7y), (14)

wherex*,% , isthe circumcenter position of the first boundary face touching the boundary ed
andxt;2 is the circumcenter position of the second boundary face (moving counterclockw
about the edge).

Combining Egs. (13) and (14) we find that

face
faces edges

_ Z U n+l/2 L Z U@2+l/2Le

boundary
edges edges

== > vol™PLeAwl™+ Y el PLleuy - (X3, —x4y).  (15)

The first term on the right-hand side can be recast as a summation over nodes, an
second term as a summation over boundary faces:

face
faces edges

Ly -
Z U n+1/2 Z va)ngl/Z Le
node boundary  face
nodes edges faces edges
n+1/2 n+1/21 ~n+1/2 1n+1/2 b b
=—Zv2we Zwh /éLeAe+ Z vZa)e 12 guhtt/ x (X3, —X2).

(16)

While the summation over node edges only involves one component of the vorticity
will be shown in Section 4 that this is a second-order approximation on uniform mest
for the enstrophy in the dual mesh polyhedron surrounding the node. The summation «
boundary face edges in the last term is an approximatiofufer ) - ns defined previously
for the convective term. Therefore, these two terms are discrete analogs of the last two te
in Eq. (6).

The final discrete kinetic energy transport equation can be written as

| ) boundary
cells n+1 1 n faces
u H U
c
I R )
f
boundary node
faces nodes edges

Z Un+1/2 Po — Z v Z w2+1/2w2+1/2%LeAe

boundary face
faces edges

+ Z v Z C?)g+1/2|_euén+1/2_ (Xt¥2 _ xg) (17)
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if the cell kinetic energy is defined as

1
Ke = E(uc)2 (18)
Then Eq. (17) can be written in a more concise notation which highlights the similarity wi
the continuous kinetic energy equation, Eqg. (6),

boundary
cells Kn+1 _kn faces
c c qn+1/2
§ Ve———C 4 § U2k
At
boundary boundary
faces nodes faces

- Z 0n+1/2 Pp — Z UVn En+l/2 + Z I)Af(u X W - n)r;+1/2’ (19)

where EMt1/2 = Vin §_node edgez;gﬂ/zwgﬂ/?%l_eAe is the node enstrophy. If desired, the
summation over nodes could be reapportioned as summation over cells using a vol
weighting. More importantly, this is the only term in the equation that causes a decreas
the discrete kinetic energy. It is negative semi-definite and the lack of other negative defi
terms implies that no artificial damping of the kinetic energy occurs. The lack of any otf
source terms is a weak proof of the numerical stability of the overall solution method. T
kinetic energy conservation property applies to the entire domain (global conservation)
each individual mesh cell (local conservation). Local kinetic energy conservation is a r:
property of numerical methods, and unknown to the authors in the context of numeri
methods for unstructured meshes, with the exception of the proposed formulation.

Note that the time level of the boundary face pressure and face kinetic energy do not af
kinetic energy conservation. However, the viscous term must be evaluated at the half-t
level in order to guarantee positive definite dissipation, and the velocity in the convect
term must be evaluated at the half-time level in order for the rotational convection term
be correctly eliminated from the discrete kinetic energy evolution equation.

3.2. Conservation of Vorticity

Conservation of vorticity is just as critical as kinetic energy conservation in large
eddy and direct numerical simulations of turbulence. Turbulence is an inherently vorti
phenomenon, and the critical energy transfer among different spatial scales is intima
connected with three-dimensional vortex stretching. Vorticity is also a critical physic
parameter in many laminar viscous flows, particularly those involving boundary laye
shear layers, and bluff body separation.

The continuous equation governing the evolution of vorticity is determined by taking tl
curl of the momentum equation. The curl operation eliminates the dynamic pressure
splits the rotational convection into two terms. One represents the convection of vortic
by the mean flow, and the other represents the increase or decrease of vorticity du
stretching or contraction of the vortex along its length. Note that the vortex stretching te
is still conservative in the sense that total vorticity is not created or destroyed by this tel
Stretching of a vortex tube increases the vorticity with the tube, but the stretching a
decreases the cross-sectional area of the tube, so that the total vorticity remains the se
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The equation for vorticity evolution in a constant viscosity, incompressible flow is give
by

9
a_C: FU-Vo = w- VU + V2(ow). (20a)

Due to the incompressibility of the velocity vector and the vorticity vector, this can be p
into conservative form, which is unambiguously written in Cartesian tensor notation as
dwj

W+(u,—wi—w1ui),j =(vwi),jj. (20b)

This section will endeavor to construct the discrete analog of Eq. (20b). The discrete vorti
equationis constructed by taking the discrete curl of the discrete momentum equation no
to mesh faces, Eq. (5a), and then interpolating this result (the vorticity equation along ed:
to a vector vorticity equation at mesh nodes.

The modified vorticity along an edge is taken todae= i > ¢ Qint. This is a
slightly different definition for the edge vorticity than used previously in the convection at
diffusion terms, since it employs the mass matrix, but it is equally accurate. The definit
of vorticity must be augmented at boundary edges, but boundary edges will be ignorec
the present. The equation for the evolution of the discrete vorticity along interior edge:
then

edge facei

edge edge
oMl _on faces faces
e e AL 7
AeT+ZLfo— ZLfdfy (21)
where c; = — % yoface edgegs LUt - (xe — X3) is the rotational convection term and
di = Aif face edges, 51 o is the rotational diffusion term. The hat on each term indicate

that the term is evaluated in the direction counterclockwise to the edge in question. As in
continuous case, the pressure term has been eliminated. The fact that a discrete curl
defined which identically zeros any gradient terms is another property of the unstructu
staggered mesh methods related to the local orthogonality of the circumcenter dual m
The equation for edge vorticity components is transformed into an equation for 1
discrete vorticity vector evolution by employing an interpolation to the mesh nodes

node node edge
edges edges faces

cG J)QH_“N)Q CG A 3
D (XS —xn) At DT (XC =) DO Li@r +d) =0, (22)

where the edges are assumed to point away from the node in questiaf®asithe position

of the center of gravity of the dual mesh polygon associated with the edge (see Fig. 1b).
shown in Section 4 thq}n §_node edgefng — Xn) Ae®e is a first-order approximation for the
vorticity vector at the nodes (second order on uniform meshes). So the first term of Eq. (
becomes an approximation for the change in time of the vorticity vector. The second te
involving the convection and diffusion, requires more consideration, particularly in thr
dimensions. It simplifies as

node edge node
edges faces faces

Z(XSG—Xn)Z L¢(&s +dp) = Z [(X5Z = %n) — (XS — Xn) | L 1 (E1 +dy),
(23)
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where(&; +dy) points counterclockwise with respect to edge 1, and all edges point aw
from the node in question. The important consideration is that each face has exactly
edges which touch a particular node and the node position therefore cancels out. Substiti
the face position for node position and reformulating back to a summation over node ed
gives

node node edge
faces edges faces

S IEE—xt) — (xF = xi) Le@r+do)==> Y [(x5 —xS)] L (€ +dr).
(24)

The last summation is a first-order approximation of the convection and diffusion teri
interpolated to the edges and lying in the plane perpendicular to the edge. The nor
component of convection and diffusion cannot be determined from neighboring face inf
mation, which is entirely perpendicular to the edge. Interestingly, it is also not necess:
The same interpolation was used to determine the velocity vector at the edges for us
the convection term. With this transformation, it is possible to write the equation for tl
discrete vorticity vector at a node as

node node
wn+1 —wn edges edges
Vo=t D texCiAe=—) texdgA. (25)

wheret, is the unit vector pointing outward along the edge, ehdinddZ are first-order
approximation to the vector convection and diffusion terms interpolated to the edges
lying in the plane perpendicular to the edge.

In the case of convection,= w x u andct = te x (welld — wlUe), SO

te X Co = —wely + Uewy = —(welly + wetele) + (Uewy + wetele) = —welle + Ugwe,
(26)

wherews is the vorticity along the edgey is the velocity in the plane perpendicular to
the edgeu, is the velocity component along the edge, andis the vorticity in the plane
perpendicular to the edge. This form of the convection term is equivalent to the convect
term found in the continuous vorticity equation, Eq. (20b).

The diffusion term isd = V x vw. If for simplicity we assume the viscosity to be
constant, then

1 . det L dwt a(nwe) L a(Nwe)
p(lexde) = =T+ (Vo = = = == & (Vwor =50
Jw
T + (Vwe), (27)

where (Vwe)* is the gradient of the outward pointing vorticity component in the plan
perpendicular to the edge. The first equality can be obtained by hypothesizing an orthog
coordinate system aligned with the edge so that (0, 0, 1) anddg = (e _ dwp dop
‘)d—‘fl 0). The final expression is equivalent4qw; j — wj ;)n; in Cartesian tensor notation.
The first part constitutes the standard diffusion term. When multiplied by the edge area
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summed over the node edges the second part is equivalén tp; which is identically
zero. It is unlikely that this term will be identically zero in the discrete implementation b
it still constitutes a flux term and will not affect conservation.

In summary, the vorticity evolution equation (Eq. (25)) can be written as

n((j)de nc(j)de
WL _ 0 edges A A edges 9o i
VnnTtn + Z Ag[licwe — @ele] = Z Aev [aﬁ - (Va)e)], (28)

which is the discrete equivalent of Eqg. (20b). It indicates that the unstructured stagge
mesh discretization of the rotational form the Navier—Stokes equations is identical t
particularunstaggeredontrol volume discretization of the vorticity evolution equation. As
aresult, the method conserves vorticity. Note however that the method differs from stanc
vorticity evolution methods in two very fundamental ways. First, boundary conditions &
imposed on the primative variables, not the vorticity. Second, the vorticity is a deriv
guantity, not a fundamental quantity.

The relevant control volumes for the vorticity evolution equation are no longer the origir
mesh cells, but rather the associated Veronio dual control volumes associated with
mesh nodes, and the vorticity vector is defined at mesh nodes, not at cell centers.
exact discretization of the convection term and its associated variables (sughigot
important for vorticity conservation. However, it was shown previously that kinetic enert
conservation is closely tied to the specific definitions of these variables.

The analysis presented above is for interior nodes. It is clear that a similar analysis
be performed on boundary nodes as long as the dual mesh polygonal volume surroun
a boundary node is supplemented by the appropriate boundary information.

Global vorticity conservation is a direct consequence of the fact that the convective «
diffusive vorticity fluxes at interior edges are equal and opposite for the two nodes touch
each edge. Consequently, the contributions from all edges cancel out, and only the bour
information associated with boundary nodes remains.

4. ACCURACY

In this section, the accuracy of the various unstructured staggered mesh approximat
is evaluated. Determining accuracy of discrete operations on arbitrary unstructured me
is extremely difficult to do using Taylor series expansions. This is particularly true of tl
operators described in this work which use minimal neighbor information and require
tensive cancellation of large errors due to the neglected terms. There are a host of geon
identities which must be known and appropriately utilized. The use of staggering and
highly unintuitive nature of many of the proposed approximations makes the task of a
lyzing accuracy even more complex. The standard finite element practice of showing
the solution lies in a function space of piecewise polynomials of a certain order is
straightforward either. We choose therefore to approach the issue of accuracy from a re
unusual viewpoint, relying heavily on fundamental integral relations of multidimension
calculus such as Gauss’ divergence theorem and Stokes curl theorem. This section sl
make it clear that this novel approach is a useful tool in the analysis of unstructured m
accuracy.
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4.1. Rotational Convection Term

This section analyses the accuracy of the approximation for the rotational convect
term normal to the facdw x u) - n¢. A similar, but two-dimensional analysis is found in
Ref. [3]. We begin with Stokes theorem applied to the vector quantityX — Xg)]w where
u is the velocity vectorw is the vorticity vectorx is position, andg is an arbitrary origin
for the position

/Vx {[u-(x—xo)]w}-ndAz/[u-(x—xo)](w-f)dL, (29)
aS

S

whereSis a surface with normal, andd Sis the boundary of the surface with unittangential
vectort oriented in a counterclockwise direction around the boundary with respect to t
face normal.

The surfaces of interest in this case are the faces of the mesh, and the boundary of
surface is the edges that form the face. Since the face normal does not change and the
are linear, the integral can be rewritten as a summation of the line integral along each e

face
edges

f-/Vx{[u-(x—xo)]w}dAz Zfe~ /w[u-(x—xo)]dL. (30)

face edge

In Cartesian tensor notation, the left-hand side of this equation can be simplified as

nj /8ijk(usfswk),j dA=n /8ijk[Uswkfs,j + rs(uswi) j]d A
s s

=n /Eijk[ujwk + rs(Uswy), j1d A, (31)
s

wherer = X — Xg is the relative position vector, and the identity that the gradient of th
position vector is the identity matrix{; = &s;) has been used. Using the previous notatior
thatwe is the vorticity component oriented along an edge and counterclockwise to the f:
we can write

face
edges

—Ng ~/wXUdA—i—ni/Eijkrs(Uswk)_J‘dA: Z /c?)e[UJ']dL. (32)

s S edge

Note that this is an exact equation. The second term cannot be unambiguously writte
vector notation so it has been left in Cartesian tensor notation.

If we make the first-order assumption that the velocity fieland the vorticity fieldw
are constant along the face and the edges, then the second term is zero and the integra
be evaluated to give

face face
edges edges

Af(w x Wt -Nf=— Z Le@ele - {Xe — Xo} = Z Le@ele - {Xe — Xt}, (33)
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where the position origiX; is arbitrary for each face and need not even lie on the fac
itself. For conservation of kinetic energy it was shown fhats not arbitrary and must be
the midpoint between neighboring cell circumcenters. Using first-order approximations
the velocity and the edge tangential vorticity will not affect the first-order accuracy of tl
approximation.

4.2. Edge Velocity

The formula for the velocity in the plane perpendicular to the edge is also derived via
Stokes theorem. In this case we consider the vaeofr)u wheref = n x (X — Xg), U is
the velocity vectom is the surface normal vectorjs position, ando is an arbitrary origin
for the position.

/VX{(a.r)u}-ndA:/(a-r)(u-f)dL, (34)

S S

where S is a surface andS is the boundary of the surface with unit tangential vectol
t oriented in a counterclockwise direction around the boundary with respect to the f;
normal.

However, unlike the surfaces of interest in the previous case, the surface of interes
the edge velocity is the dual mesh edge area. This area surrounding an edge has a ni
vector and, and unit tangential vectors pointing along is periphery whichiare-one for
each face touching the edge:

edge
faces

te- /Vx{(a~F)u}dA= Zﬁf-/u(a«F)dL. (35)

edge face

Note that the edge integral is an integral over the plane perpendicular to the edge, an
face integrals are line integrals over the lines connecting neighboring cell circumcente!
In Cartesian tensor notation, the left-hand side of this equation is written as

{j /sijk(asssnptnrpuk),j dA= /sijkssnpastitn[ukrp,j —i—rpuk,j]dA
S S

= /[8jki<9jsnastitnuk + esnpstitnl pwi ] d A
s

= /[(5ks3in — Skndis)astithl + astifswi] d A
S

S

Using the fact tha& is an arbitrary constant vector, we can now write that

edge
faces

/[u—t(t-u)—l—F(t-w)]dA:Z/(ﬁf-u)FdL. (37)

edge face
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Since the surface in question is planar the normal vettar constant, and

edge
faces

/[ul—i-F(t'w)]dA:txZ/(ﬁf'u)rdL, (38)

edge face

whereu is the velocity vector in the edge plane. If the velocity is constant on the fac
then

edge
faces

UgAe=te x »_ LO(X] —Xe). (39)

The second term on the left-hand side of Eq. (38) can also be eliminated by choosing
arbitrary position origin to be the center of gravity of the edge polygon. This gives a secol
order approximation for the velocity vector at the edge polygon’s center of gravity, but tt
is still a first-order approximation to the velocity at the edge itself.

The interpolation of a vector quantity from its face components has also been descri
by Shashkowet al. [13] and Hyman and Shashkov [14] in the context of two-dimensione
distorted Cartesian meshes.

4.3. Node Enstrophy

The enstrophy (vorticity squared) is a quantity which is similar to the kinetic enerc
(velocity squared). The derivation resembles the two-dimensional formula for kinetic ene|
found in Ref. [13]. The primary difference is that kinetic energy is located at cell cente
and enstrophy is located at mesh nodes (cell corners). The derivation starts with Ga
divergence theorem applied on the dual mesh volume surrounding a node:

/V-{(w-r)w}dV:/(w-r)(w-n)dA, (40)
Vv v

whereV is a volumepV is the surface of the volume with outward pointing normal vecto!
n, andr = X — Xp is the position vector relative to an arbitrary origin.
In Cartesian tensor notation, the left-hand side of this equation is written as

/(wprpwk),k dVv = /(a)pr pk T wpilpwxdV = /(a)k + wp il poxdV. (42)
% % %

Assuming a constant vorticity in the volume gives the relation

node
edges

(w-w)Vh = Z{w : (XeCG - Xn) }ClA)eAea (42)

wherews is the vorticity component along the edge and pointing away from the node. T
edge positiorx, is taken to be halfway between two nodes, and is not the same as
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center of gravity of the edge polygoxf;©. Reformulating based on the edge position give:
a position vector that is normal to the edge polygon,

node
edges

(w-w)V, = Z {w . (XgG - Xe) +w- Xe — Xn)}c?)eAe

node node
edges edges 1
=Y w (X xe)deAet D wevehesLe (43)

The second term on the right-hand side is the expression appearing in the kinetic en
conservation equation as the expression for volume weighted enstrophy. This remark
expression says that the volume weighted average of just the edge vorticity magnit
squared is sufficient to give us the entire enstrophy at the node. Note, however, that
volume weights sum to a total of three not to the standard value of unity.

The first term on the right-hand side is not zero for a single node in a general nonunifc
mesh. In that case this term should properly be included in the viscous flux term in
kinetic energy equation (final term in Eq. (15)). However, if we sum over all nodes in tl
mesh (for the total enstrophy) this term cancels out at every edge connecting two nodes
leaves no net contribution (even at the boundaries). The cancellation is a result of the
that this is a flux term. Note that a similar contribution will be obtained from each not
touching a particular edge, but the value«gfi§ equal and opposite for each of the two
nodes (since it always points outward). Since all other values are identical at the two-nc
contributions at an edge will exactly cancel. And since every edge has exactly two no
associated with it, the final result is complete cancellation of the second term of Eq. (4
we consider a complete mesh not just a single node. The mesh in question could cons;i
a single cell if so desired.

4.4. Node Vorticity Vector

The formula for the vorticity vector at nodes is also a product of Gauss’ divergen
theorem applied to the dual mesh control volume surrounding the node. In this case
start with

/V-{(a-r)w}dV=/(a-r)(w-n)dA, (44)
\% A

where the vectoa is an arbitrary constant vector. In Cartesian tensor notation the left-ha
side of this equation is written as

/(apl’pa)k),dez /aprp,ka)dez /aka)de. (45)
\% \ \%

Sincea is arbitrary, this becomes

node
edges

waVo = Y (xSC = xn)deAe (46)
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if we assume that vorticity is constant in the dual mesh control volume. This is a first-orc
approximation for the vorticity vector at the node given the vorticity component along tl
edges. Any first-order approximation for the vorticity component along the edges can
used and the expression remains first order. A similar approximation is used to compute
velocity vector in cells from the face normal velocity components.

5. NUMERICAL TESTS OF CONSERVATION AND ACCURACY

In order to test the conservation properties of these schemes a problem was ch
that has zero mass flux at the boundaries, but is inherently unsteady. The initial flow fi
of this problem involves a Rankine vortex located in the bottom left quadrant of a bc
Although the problem is tested in a 3D domain (1.0x1.0 m x 0.1 m) and using an
unstructured tetrahedral mesh, it is a two-dimensional flow since the motion only occ
in X=Y plane and only the z-component of the vorticity vector is not zero. The doma
is meshed with 7578 tetrahedra. The viscosity of the fluid is 0.&% and the maximum
initial velocity magnitude is 0.16 m/s. The initial tangential velocity reaches its maximu
at radius R=0.01 m for an initial circulation Reynolds number of 1. The initial velocity
profile and computational mesh are shown in Figs. 2 and 3. All the boundaries are slip we

5.1. Conservation of Kinetic Energy

The discrete kinetic energy within each mesh cell was calculated at every time step us
Eq. (18). The total discrete kinetic energy was then evaluated by calculating the volu
weighted sum over all the cell kinetic energies,

cells

KEtotal = Z VcKc~

Since there is no flow across the domain boundaries, the change of this quantity with t
is only due to the effect of dissipation.

In numerical tests of the vortex motion in the absence of viscosity, the total discre
kinetic energy remained constant to within six significant digits after 5000 time ste
(0.05 seconds). This is about as constant as can be expected given the tolerance pres:
for the iterative solver. When viscosity is present (0.F1s) the total discrete kinetic energy
as a function of time is shown in Fig. 4a. The rate of change of the kinetic energy obtair

(a) (b)

FIG. 2. Two-dimensional Rankine vortex. (a) Tangential velocity vs. radius. (b) Streamlines.
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FIG. 3. Three-dimensional domain and surface mesh for the vortex test problem.

by differentiating this curve is compared with the calculated physical dissipation. A perf
match is shown in Fig. 4b. This test indicates that the theoretical analysis of Section 3.
well-founded and that there is no artificial dissipation in the method.

5.2. Conservation of Vorticity

The discrete vorticity within each mesh cell was calculated at every time step. The tc
discrete vorticity was then evaluated by calculating the volume weighted sum over all
individual node vorticity values,

nodes

Qotal = Z Vhwhn.

Since there is no flow across the domain boundaries, and the diffusive vorticity flux is z
atthe domain boundaries, this quantity should be constant, even in the presence of visc

4,74E-5 T T T T T T T T T 0.000195 T T T T ] T T T
e i/
4,68E-5 — 0.00018 |- . .
o0 - *
v=00(m2/s) viscocity*enstrophy
4.62E-5 |- ~ 0.000165 -
o
E’ 4.56E-5 [- - @ 0.00015 -~
g ®
5 asEs8f - C 0.000135
S S
% 4.44E-5 |- - - 0.00012
£ o
X 438E-5 - ‘! 0.000105
- 7]
] 2 a
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FIG. 4. Kinetic energy conservation test. (a) Total kinetic energy vs. time. (b) Rate of change of kinetic ene
versus time (solid line) and total physical dissipation versus time (circles)£00.01 n?/s.
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In this numerical test, the initial total vorticitg-component is—0.00033 (sec?); alll
other components are zero. Final result shows that this scheme conserves the vortici
three significant digits after the solution has evolved for 0.05 seconds (5000 time ste
roughly one vortex revolution), which is again all that can be expected given the solut
tolerances of the iterative solver and the fact that vorticity has higher errors associated \
it than the velocity.

5.3. Conservation of Momentum

The discrete velocity (momentum) within each mesh cell was calculated at every til
step using Eg. (4). The total discrete velocity was then evaluated by calculating the volul
weighted sum over all the individual cell velocity valuékgt = Zce"svcuc. Since there
is no flow across the domain boundaries, and because we are using slip walls, this qua
should remain constant even in the presence of viscosity.

It was found that the proposed discretization conserved thextgtal, andz-momentum
to machine precision. In this problem, thkeomponent velocity is always zero and the
andy-components are symmetric about vortex axis, thus the initial total momentum is ze
The result shows that these three components remain zero (to machine procession)
5000 time steps. The global conservation of momentum of the rotational discretization \
not shown analytically in the text, but was determined to be a result of the fact that 1
streamfunction on the boundaries does not change with time.

5.4. Numerical Tests of Accuracy

This section confirms the accuracy assessments of the preceding sections using a ¢
of numerical tests. In each case, a sinusoidal function is assigned to the input variak
The exact solution is computed analytically and the approximate solution is compu
numerically using the approximations described in the text. Rather than changing the ir
size, which is a cube (1.0 m1.0 mx 1.0 m) meshed with 8838 tetrahedra (shown in
Fig. 5), mesh refinement has been performed by changing the wavelength of the input
functions. Small wavelengths are equivalent to a coarse mesh solution.

The stream function was set to %?N sin(27 N x) cos(ZnNy)E. Exact velocities and
vorticity were then derived from this streamfunction. The maximum velocity magnitude
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FIG.5. Surface mesh for the accuracy tests.
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FIG. 6. Errorin the edge velocity interpolation.

unity. The average mesh volume was calculated first, and then the average mesh spe
AXavg Was taken to bg/3.0x Vayg and was found to be 0.07. The effective length of the
domain is 1.0N, whereN is a variable integer value. Larger valueshfcorrespond to a
coarser effective mesh. The relative mesh size is definedaotgy/Ler = 0.07+ N. So a
relative mesh size of 1 corresponds to roughly 14 cells per wavelength. The error define
this accuracy test is the root square mean error. Figure 6 shows the accuracy of the prog
velocity interpolation, Eq. (39), to the mesh edges. Triangle symbols are the error in
x-component of velocity, circles are the error in heomponent, and crosses are the error ir
thez-component. The dashed lines represent the error in the velocity interpolation requi
by the standard rotational form (described in Perot [3]) in which the formula is similar
Eqg. (39) butx} is replaced by$. For coarse meshes, the error of the standard scheme
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FIG. 7. Errorin convection term. (a) Error versus relative mesh size. (b) Log scaling.
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FIG. 8. Errorin node vorticity. (a) Error versus mesh size. (b) Log scaling.

slightly smaller than the velocity interpolation described in this work (Eq. 39), but as tl
mesh is refined, it does not converge to zero. The solid lines are the current interpola
scheme, which is shown to be first-order accurate.

The approximation for the convective term is was tested by assuming exact vortic
and velocity at the mesh edges, and using Eq. (33) to calculate the normal componel
w x U at the faces. The convective term interpolation, as shown in Fig. 7, is second-or
accurate. Figure 8 shows the accuracy of the vorticity vector interpolation, Eq. (46), to
nodes. Since- and y-components are zero to machine procession, only the accuracy
the z-component vorticity is plotted. Second-order accuracy is clearly shown in the figu
Figure 9 shows the accuracy of total node enstrophy interpolation. Second-order accu
is achieved when Eq. (43) is used to calculate the total enstrophy. The mesh used in
test is a nearly uniform one as can be seen in the surface mesh shown in Fig. 5. On a hi
nonuniform mesh we would expected to see first-order accuracy for these interpolatior

6. DRIVEN-CAVITY PROBLEM

The driven-cavity problem was chosen to test the validity of this scheme for actual flt
simulation. The computational domain and mesh are the same asthat used inthe consen\
properties tests of Section 5. As shown in Fig. 10, the top lid is moving with a conste
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FIG. 9. Errorin enstrophy. (a) Error vs. mesh size. (b) Log scaling.
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U= 0.001m/s

p (1.0,1.00.1)

(0,0,0)

FIG. 10. Driven cavity problem.

x-component velocityld = 0.001 m/s). Left, bottom, and right boundaries are solid walls
The front and back are slip walls. The viscosity of the fluid is®h?/s. The Reynolds
number defined as Re % is 100. After 20,000 time steps (2000 s), a steady solutio
is achieved. While the underlying solution is essentially two-dimensional so that it c
easily be compared with other solution methods, the underlying numerical scheme is f
unstructured and three-dimensional, and does not take advantage of two-dimensionali
any way. Figure 11a shows tlrecomponent velocity as a function gfthrough the center.
Figure 11b shows thg-component velocity as function of through the center. In both
figures, data were extracted from the symmetrical plage0.05.

In Fig. 11, solid lines represent the simulation results and circles represent the res
from Ref. [15], in which a more refined structured Cartesian mesh is used. Given that
tetrahedra mesh has a spacing roughly equivalent to>a 30D Cartesian mesh, the results
are quite acceptable. Figure 12 shows the velocity vectors on the symmetryzplaf®
of the steady solution. The location of the primary vortex center predicted by this schem
(0.652, 0.717) which is reasonably close to (0.617, 0.734), the location predicted by [:
Furthermore, by carefully studying the streamlines obtained from the integration of veloc
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FIG.11. Velocity profile of the driven cavity problem. (&) velocity profile on vertical line through the center
(b) V velocity profile on horizontal line through the center.
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FIG. 12. \elocity vector plots for cavity flow at Re- 100.

vectors, we found that a small vortex at the right bottom corner was successfully captu
(not seen in the figure) even though the mesh is relatively coarse. Due the resolution of
mesh, an even smaller vortex at the left bottom corner predicted by Ref. [15] is not captul

7. CONCLUSIONS

The Cartesian staggered mesh scheme of Harlow and Welch [1] remains a popular sct
for the solution of the incompressible Navier—Stokes equations to this day. This is
haps because the scheme displays a remarkable number of very attractive matheme
physical, and practical properties. This work presents a generalization of the stagge
mesh scheme to general unstructured three-dimensional meshes that displays many of
same mathematical, physical, and practical attributes. It requires low memory storage, |
very compact interpolation and discretization operators, and conserves important phy:s
parameters beyond the primary discretization variables. The accuracy of the unstruct
implementation is equivalent to the standard Cartesian staggered mesh method—first ¢
on arbitrary meshes but effectively second order on reasonably smooth meshes and pra
mesh sizes.

Other unstructured staggered mesh schemes exist in the literature [16, 17], even
three-dimensional problems [18-20]. These methods can differ in numerous ways but
fundamental differences appear to be in how vectors (particularly velocity) are interpola
from component information and what form of the Navier—Stokes equations the discreti
tion is based on. This work describes a number of novel interpolation schemes and desc
how they lead to conservation properties. It also describes a discretization based on the
tional form of the Navier—Stokes equations whereas all other previous work has focuse
discretizations starting from the divergence form of the governing equations. It is entire
possible that other interpolations and other schemes also display conservation prope
Previous work [3] shows that this is certainly the case in two dimensions. It is hoped tl
the new methods for analyzing accuracy and conservation that are developed in this v
will aid in the analysis of other unstructured staggered mesh methods.
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The fact that this method can be shown to be equivalent to an unstaggered control
ume discretization of the vorticity equation (Section 3.2) suggests that it is closely rela
to streamfunction—vorticity or velocity—vorticity methods. There is a strong connectic
but also some very fundamental differences. The present formulation poses all boun
conditions on the velocity or the pressure. Unlike streamfunction—vorticity methods, boul
ary conditions on the vorticity or the streamfunction are not required. In addition, becau
the method really only advances the component of vorticity along mesh edges, the co
the method does not triple when going from two dimensions to three dimensions, as is
case with standard streamfunction—vorticity methods. The underlying reason for these
significant differences is because the vorticity vector is a derived, rather than a prim
variable. Alternatively, the distinction is the fact that the equations were discretized fi
and then manipulated into a vorticity-like form, rather than analytical manipulation of tl
exact equations into a vorticity equation followed by discretization.

The major limitations of the proposed scheme are its low-order accuracy (effectivi
second order), and the reliance on cell circumcenters and the local orthogonality prope
of the Delaunay dual mesh. Current research is directed toward increasing the accu
of the discrete operators, and allowing the use of nonorthogonal dual meshes such a
median dual mesh which connects cell and face centroids.

APPENDIX

Avariety of methods is available to calculate center of gravity (centroid) and circumcen
locations. The best choice is largely determined by the available data structures and r
connectivity information. In this work, we use methods that can be applied to an arbitr:
mesh configuration. The center of gravity of a face is calculated as the area weighted
of the center of gravity of each subtriangle formed by the face edge and a central poin
the face (which is arbitrary). The formula is

fgce fgce
1 & 1 2 1 2 BT A,
CG 1 f
X77 = — —Lelgi( X =Xe | = =X = —Xe, Al
f Afzzeef<3f+39> 3f+SZAfe (A1)

wherelg; = |te X (Xe — X£) - N¢| is the perpendicular distance from the edge to the centr
point on the face. The center of gravity for the cell is calculated similarly, using subtetrahe
associated with each face,

cell cell
faces faces
1 1 1 3 1 3 V¢
CG _ L CG ) — E —Cx¢e
Xe =V E éAfoC<ZX°+ZXf ) _ZX°+Z Ve Xt (A2)

whereL, = [(xc — x§%) - n¢| is the perpendicular distance from the face to the centr:
point in the cell.

Explicit formulas exist for finding the circumcenter of a triangle or a tetrahedron, b
these formulas do not generalize to an arbitrary mesh (such as rectangles), which migh
have well-defined circumcenters. For this reason, iterative methods are used to find the
and cell circumcenters. These methods are based on the property that the face circumc
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is located perpendicular to the edge midpoints. The iteration is based on the formula

face
edges

XFE=xF 4o Y te(xFE—Xe) - te, (A3)

whereq is a convergence parameter usually setto 1. The convergence is quite rapid, ust
taking less than five iterations. The iterative formula for cell circumcenter position is simile

cell
faces

X=X a0 ) i () . (Ag

This formula converges equally rapidly. The formulas are applicable to arbitrary mesh
even those without well-defined circumcenters. If a circumcenter does not exist, lo
orthogonality will not be achieved by these locations, which is an easy check on the me
The algorithm will still work on such a mesh without local orthogonality but accuracy ar
conservation properties are unlikely to continue to apply.
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