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A three-dimensional unstructured mesh discretization of the rotational from of
the incompressible Navier–Stokes is presented. The method uses novel and highly
efficient algorithms for interpolating the velocity vector and constructing the conven-
tion term. The resulting discretization is shown to conserve mass, kinetic energy, and
vorticity to machine precision both locally and globally. The spatial accuracy of the
method is analyzed and found to be second order on regular meshes and first order
on irregular meshes. The numerical efficiency, accuracy, and conservation properties
of the method are tested on three-dimensional meshes and found to be in agreement
with theory. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The staggered mesh discretization referred to in this work is a discretization scheme
where pressure and other scalar quantities, such as thermodynamic variables, are stored
at cell centers but the velocity vector is distributed to cell faces. Each face stores only the
normal component of velocity at that face. Because every three-dimensional cell contains at
least four nonparallel faces, the velocity vector can always be recovered from face normal
components. This recovery or interpolation of the velocity vector from the face normal com-
ponents is not unique and it is a defining characteristic of various staggered mesh schemes.
As will be shown in this text, particular interpolations can lead to important properties for
the overall solution method. The primary difficulty of constructing conservation proofs of
vector derived quantities, such as vorticity or kinetic energy, is in determining the correct
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definition (or interpolation) which defines the velocity vector from the primary face normal
components.

Harlow and Welch [1] first described a Cartesian mesh implementation of the staggered
mesh discretization in 1965. Their motivation was primarily the simplicity with which the
incompressibility constraint can be implemented from within this framework. An important
property of the method, which makes it popular even to this day, is the fact that discretizations
of the incompressible Navier–Stokes equations that are based on this staggering scheme do
not display spurious pressure modes. No particular treatment of the pressure is required to
remove the red/black uncoupling found in colocated finite volume methods or the pressure
locking found in some finite element and Lagrangian methods. Subsequently, it was realized
that the staggered mesh approach had attractive conservation properties. While mass and
momentum conservation are typically imposed explicitly via the discrete equations, Lilly [2]
showed that Cartesian staggered mesh methods also conserve vorticity (or circulation in
three dimensions) and conserve kinetic energy in the absence of viscosity. Perot [3] has
recently shown in a two-dimensional setting that unstructured staggered mesh methods
can also obtain such conservation properties. The conservation properties of a numerical
method can be an indication of the methods underlying physical accuracy. As a result,
staggered mesh methods are also popular in physically demanding situations such as the
direct numerical simulation (DNS) of turbulence [4–6] and the large eddy simultation (LES)
of turbulence [7]. The dynamic subgrid scale models used in LES appear to be particularly
sensitive to the kinetic energy conserving properties of a numerical method [8], and as such,
are a primary motivation for this particular research investigation.

The generalization of staggered mesh methods to unstructured meshes was proposed
by Nicolaides [9] and separately by Porshing [10]. The enhanced utility to be gained by
using unstructured meshes in complex geometries is obvious. However, the extension of
structured staggered mesh methods to an unstructured mesh setting is more complex than it
might first appear. On a Cartesian mesh, cell and face centers are relatively unambiguous.
On a three-dimensional unstructured mesh, which is typically a collection of irregular
tetrahedra, numerous possibilities for cell and face centers exist, resulting in a host of
different staggering possibilities. This work will describe a method that uses circumcenters
as the defining cell and face locations.

The attractive properties of both the Cartesian and unstructured staggered mesh methods
can be traced back to the fundamental mathematical properties of the discrete difference
and averaging operators. The operators have symmetry properties (such as the discrete
divergence is the transpose of the discrete gradient), have operator orthogonality properties
(such as the discrete curl of a discrete gradient is always zero), and satisfy discrete chain
rule identities (such as discrete integration by parts analogs). These mathematical properties
are relatively easy to show in a Cartesian setting. Nicolaides [11] demonstrated how the
first two types of properties can be obtained for unstructured meshes through the use of
cell circumcenters. Perot [3] has recently shown how chain rule identities for unstructured
staggered mesh methods can be obtained using appropriately defined interpolation schemes.

This work will analyze the conservation properties and accuracy of a three-dimensional
unstructured staggered mesh scheme. The scheme is described in Section 2. Its conservation
properties are analyzed in Section 3, and accuracy is evaluated in Section 4. Numerical tests
of the accuracy and conservation are presented in Section 5, and a 3D driven cavity problem
is used to test this scheme in Section 6. A discussion of the method and its relationship to
other schemes is found in Section 7.
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2. NUMERICAL DISCRETIZATION

This work focuses on a discretization of the rotational form of the Navier–Stokes equa-
tions. The unstructured staggered mesh discretization can also be applied to other forms of
the Navier–Stokes equations, including the much more common divergence form. As shown
in Perot [3], the specific form of the Navier–Stokes equations appears to determine the con-
servation properties that can be obtained by the unstructured discretization. Interestingly,
this is not true of Cartesian staggered mesh methods, where discretizations of the rotational
and divergence forms of the Navier–Stokes equations can be shown to be equivalent. The
rotational form of the incompressible Navier–Stokes equations is

∂u
∂t
+ (ω × u) = −∇ pd −∇ × (vω) (1a)

∇ · u = 0 (1b)

whereu is the velocity vector,ω =∇× u is the vorticity,pd = p+ 1
2u · u is the specific

dynamic pressure, andv is the kinematic viscosity. This particular equation assumes that
viscosity is constant. Variable viscosity can be represented in the rotational form but the extra
term involving second derivatives of viscosity complicates the analysis unnecessarily and
will not be treated in this analysis. The rotational form of the Navier–Stokes equations is a
mathematically elegant way to view the equations. The convection term acts perpendicularly
to the velocity [u · (ω × u) = 0], and the fluid accelerations are now explicitly decomposed
into dilatational (pressure) and solenoidal (viscous) parts.

The primary quantity in staggered mesh methods is not the velocity vector, but the
component of velocity normal to a face. Integrating Eq. (1a) over a cell face and taking
a dot product with the face normal vector (see Fig. 1) produces an exact equation for the
evolution of the mass flux,U = ∫A f

u · n d A

∂U

∂t
+
∫
A f

(ω × u) · n d A= −
∫
A f

∂pd

∂n
d A−

∮
∂A f

vω · dL , (2)

where Stokes theorem has been used to transform the viscous term from an area integral
to a counterclockwise integration around the edges of the face. Counterclockwise in three
dimensions is defined with respect to the normal vector and the right-hand rule. The actual
orientation of the normal vector (two directions are possible) is arbitrary.

Only the vorticity component along each edge of the face is required for the viscous
term. If we denoteωe = ω · te to be the component of vorticity along an edge (wherete is
a unit vector pointing along the edge), and ˆωe to be the component of vorticity along an
edge that is orientedcounterclockwisewith respect to a particular face, then the viscous
term can be written as

∑face edges
vω̂eLe, whereLe is the length of an edge. Note that in

three dimensions, each edge has two possible orientations. It is impossible to force the edge
orientation to be counterclockwise with respect to all faces that are formed using that edge.
For that reason, the edge orientations are taken to be arbitrary with respect to the faces
and any directional dependence is accounted for with the hat (circumflex) notation, which
translates into a plus or minus sign in the actual code implementation. In two dimensions,
all edges point out of the plane of interest and have unit length.
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FIG. 1. (a) Two-dimensional unstructured mesh (thin lines) and its circumcenter dual mesh (bold lines).
(b) Geometric parameters associated with a 2D face. (c) Three-dimensional mesh cell (thin lines), and a dual mesh
polygon which is perpendicular to one of the edges (bold lines and shaded area). (d) Geometric parameters and
their locations for the 3D unstructured mesh.

If pressure is assumed to be located at cell circumcenters, then the pressure term can be
approximated by− A f

L f
(pd

c2− pd
c1) whereL f is the distance between the two neighboring

circumcenters and the normal vector points from cell c1 and toward cell c2. The fact that
the pressure term can be written in this very simple form results from one of the many
interesting properties of circumcenters. In particular, the property that a line connecting
two neighboring cell circumcenters is always normal to the face it passes through, and that
it passes through the circumcenter of that face.

The lines connecting circumcenters form an entirely new mesh, called the circumcenter
dual mesh. Many of the important properties of staggered mesh discretization and aver-
aging operators are a direct result of the local orthogonality of the primary mesh and the
circumcenter dual mesh. Note that staggering places different variables on each of these
mutually orthogonal meshes. Cartesian staggered meshes are trivially orthogonal to their
dual mesh. In fact they are not just locally orthogonal, they are also globally orthogonal.
It is this global orthogonality which allows one to prove equivalence of the rotational and
divergence discretizations for Cartesian staggered meshes.

The local orthogonality property of the circumcenter dual mesh has some even more
remarkable consequences than forcing cell centers to be normal to cell faces. It forces cell
centers to be orthogonal to edges as well. That is, the circumcenters of all the cells with a
common edge (and there can be an arbitrary number) will always lie in a plane, and that
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plane will be perpendicular to the edge. One remarkable consequence of this property is
that the vorticity along an edge (required for the viscous term) can be obtained directly
from the normal velocity components at the faces. Even more remarkable is the fact that
the convection term can be approximated as

∫
A f

(ω × u) · n dA= −
face

edges∑
ω̂eLeu⊥e · (xe− x∗f ), (3a)

whereu⊥e is the velocity vector in the plane perpendicular to the edge,xe is the edge midpoint
position,x∗f is the midpoint between neighboring cell circumcenters, and ˆωe is the vorticity
along the edge and oriented counterclockwise to the face normal. Note that the pointx∗f
lies on a line perpendicular to the face circumcenter, but not necessarily on the face itself.
Equation (3a) is not an intuitive approximation. It implies that an average of the product
involving only one component of the vorticity and one component of the velocity at the
edges is able to account for the full effects of the three-dimensional vector cross product.
Locally at each edge this expression represents only half of the cross product. Somehow,
the large error due to neglecting half the cross product at each edge cancels out when the
average over all faces edges is taken. The derivation of Eq. (3a) is given in Section 4. Note
that only the vorticity component along the edge is required in this expression as well, so if
an efficient method for determining the velocity vector at the edges can be constructed, the
method will be highly efficient. Such an interpolation is in fact available and is given by

u⊥e = te× 1

Ae

edge
faces∑

Û
L f

A f
(xe− x∗f ), (3b)

where Ae is the area of the planar polygon formed by connecting all cell circumcenters
that surround the edge (see Fig. 1b),te is the tangential vector pointing along the edge,
andÛ = ∫faceu · n f d A is the normal mass flux with the normal oriented counterclockwise
with respect to the edge. This interpolation is also not intuitive, but is formally derived in
Section 4. A two-dimensional derivation of the same type of interpolation is presented in
Ref. [3]. Interestingly, in matrix form, the summation in Eq. (3b) is the transpose operation
of the summation in Eq. (3a). It should also be pointed out that the resulting interpolated
velocity vector at the edges is actually only the velocity in the plane perpendicular to the
edge. The velocity component along the edge cannot be recovered from the neighboring
faces, since the normal velocity does not contain any information in the direction along the
edge. However, referring back to Eq. (3a) it is clear that only the velocity in the edge plane
is required for the computation to proceed, and the interpolation given by Eq. (3b) is quite
adequate for our purposes.

In two dimensions, the time derivative can be left just as it appears in Eq. (2), as the
change in the face normal velocity. However, it is found that for three-dimensional kinetic
energy conservation a symmetric “mass matrix” is required for the time derivative term
which couples it with its nearest neighbors. A discrete kinetic energy can be constructed
without using this mass matrix (as in the 2D case), but the resulting discrete kinetic energy
is only a zeroth order accurate approximation to the true kinetic energy on arbitrary three-
dimensional meshes. It would therefore result in a statement of stability but not a true



A THREE-DIMENSIONAL STAGGERED MESH SCHEME 769

statement of kinetic energy conservation. The mass matrix is constructed by interpolating
the normal velocity components to construct a cell velocity vector, and then defining the
normal velocity at the face as the average of the two neighboring cell velocities. The resulting
face normal velocity is still first-order accurate on general meshes. Interestingly, this new
normal velocity is identical to the original normal velocity when the mesh is uniform, so
this apparent averaging process isnotdiffusive. Formally, the cell velocity is defined to be

uc = 1

Vc

cell
faces∑(

xCG
f − xc

)
Û , (4)

whereuc is the velocity vector at the cell center,Vc is the volume is this particular cell,xCG
f

is the position of the center of gravity of the faces surrounding this cell,xc is the position of
the cell center, and̂U is the mass flux out of the cell. This interpolation, while unintuitive,
is discussed in Ref. [3] and shown to be a first-order approximation on nonuniform meshes.
The normal mass flux at a face is then given byA f

L f
[uc1 · (xCG

f − xc1)− uc2 · (xCG
f − xc2)] =

A f

L f
uint. It is clear that this latter approximation is also first order, and is exact if the local

velocity field is constant between the two cells.
In summary the three-dimensional staggered mesh discretization of the rotational form

of the Navier–Stokes equations is given by

∂uint

∂t
− L f

A f

face
edges∑

ω̂eLeu⊥e · (xe− x∗e) = −
(

pd
c2− pd

c1

)− L f

A f

face
edges∑

vω̂eLe (5a)

cell
faces∑

Û = 0, (5b)

whereÛ is the mass flux out of the cell in question,ωe = 1
Ae

∑edge facesL f û is the vorticity
component along an edge, ˆωe is the vorticity component along an edge and
counterclockwise to the face in question, and the velocity in the edge plane is given by
u⊥e = te× 1

Ae

∑edge facesûL f (xe− x∗e).
The memory requirements for this method are very low and the computational efficiency

is very high, requiring only a local communication stencil between faces and edges and
faces and cells. To obtain conservation of kinetic energy it is not possible to use upwinding
in this scheme, but upwinding can be included in this type of scheme by changing the
effective cell and edge positions in the interpolations.

One critical issue for this methodology is the use of cell circumcenters to define the
dual mesh. On a highly distorted mesh, a cell circumcenter can lie outside its cell. For a
Delaunay primary mesh, the dual mesh is still guaranteed to be regular even when the mesh
is highly distorted and the analysis follows through unaltered. Remarkably, the algorithms
and analysis still hold for arbitrary meshes as well, but one must be prepared for negative
face lengths and negative edge areas (the dual mesh can become inverted). The real issue
is not one of implementation but of accuracy. The method is first order but intolerably
inaccurate for arbitrary meshes. All the meshes used in this work are Delaunay, and a
number of effective algorithms exist in the literature to generate Delaunay meshes rapidly.

Equation (5a) can be interpreted as a discretization of the momentum equation integrated
along the two line segments joining the neighboring cell circumcenters and the face center
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of gravity. The convection and diffusion terms normal to the face are appropriate approxi-
mations for these two line segments (even though the segments are not necessarily normal
to the face), because the tangential components of convection and diffusion along each seg-
ment are equal and opposite. In two dimensions, the face circumcenter and center of gravity
are identical and so the line segments are automatically parallel to each other and normal to
the face. This is why two-dimensional or uniform three-dimensional unstructured meshes
are significantly simpler than the general three-dimensional case treated in this work.

The computation ofωe andu⊥e on boundary edges requires that the integration around the
edge polygon be completed. In both cases, it is the integral of the velocity tangential to the
edge and along the boundary that must be specified in order to complete the integration.
The tangential velocity component at boundaries is assumed to be known, either explicitly at
walls or static inflow conditions, or via extrapolation from the interior for outflow conditions.
It is also clear from Eq. (5a) that either the boundary mass flux can be specified, or the
boundary flux can be left as an unknown and the boundary pressure specified (both the
convective and diffusive terms can be calculated on boundary faces). This choice of specified
pressure is ideal for outflow boundaries. In fact, a potential inflow boundary condition can
also be implemented in this framework. It specifies that the vorticity is zero at the inflow
and the dynamic pressure is constant along the boundary.

3. CONSERVATION PROPERTIES

3.1. Conservation of Kinetic Energy

Conservation of kinetic energy is an important property for numerical simulations of
turbulence. The cascade of kinetic energy from large scales to smaller scales is one of the
defining characteristics of three-dimensional turbulence. Dissipation of energy at the small
scales sets the rate at which energy transfers down this cascade. Numerical methods with
excessive numerical dissipation can alter simulation results even if the numerical dissipation
is only at small scales [8]. This section will show that the proposed method dissipates kinetic
energy at the correct rate without numerical dissipation. A simpler proof of kinetic energy
conservation in two dimensions can be found in Perot [3]. Conservation of kinetic energy
for distorted 2D Cartesian meshes is presented in Ref. [12].

For an incompressible fluid, the specific kinetic energy1
2u · u can be shown to obey the

following transport equation:

∂( 1
2u · u)
∂t

+∇ ·
[
u
(

1

2
u · u

)]
= −∇ · (pu)+∇ · (vu× ω)− vω · ω. (6)

Except for the negative definite sink term involving the product of viscosity and enstrophy,
the equation is conservative. In the absence of external forces and viscosity, the kinetic
energy is simply redistributed but not created or destroyed. The discrete system should
mimic Eq. (6).

To prove strict kinetic energy conservation, the evolution equation for the normal velocity
component (Eq. 5a) must also be discretized in time. A midpoint rule for the discretization
will be assumed,

un+1
int − un

int

1t
− L f

A f

face
edges∑

ω̂eLeu⊥n+1/2
e · (xe− x∗f ) = −

(
pd

c2− pd
c1

)− L f

A f

face
edges∑

vω̂n+1/2
e Le.

(7)
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Note that for kinetic energy conservation, the time level of the pressure and of the vorticity
in the convection term is not important.

The evolution equation for the discrete kinetic energy is constructed by first multi-
plying Eq. (7), the evolution equation for the normal velocity component, byUn+1/2 =
1
2(U

n+1+Un) and then summing over faces. The summation over all the faces of a
single cell results in a statement of local kinetic energy conservation for that cell.
A summation over all faces in the domain results in a statement of global kinetic energy
conservation. Global kinetic energy conservation is also a weak statement of numerical
stability because if the kinetic energy is bounded the velocity must also be bounded.

Multiplying by Un+1/2 and summing over faces gives

faces∑
Un+1/2

(
un+1

int − un
int

)
1t

−
faces∑

Un+1/2 L f

A f

face
edges∑

ω̂eLeu⊥n+1/2
e · (xe− x∗f )

= −
faces∑

Un+1/2
(

pd
c2− pd

c1

)− faces∑
Un+1/2 L f

A f

face
edges∑

vω̂n+1/2
e Le. (8)

The definition ofuint as a summation of two cell contributions allows us to reformulate the
summation over faces as a summation over cells. The time derivative becomes

faces∑ (
un+1

int − un
int

)
1t

Un+1/2 =
cells∑ (

un+1
c − un

c

)
1t

·
cell
faces∑(

xCG
f − xc

)
Û n+1/2

=
cells∑ (

un+1
c − un

c

)
1t

· Vcun+1/2
c

=
cells∑

Vc

(
un+1

c − un
c

)
1t

· 1
2

(
un+1

c + un
c

)
=

cells∑
Vc

1
2

(
un+1

c

)2− 1
2

(
un

c

)2

1t
. (9)

Sinceuc is a first-order approximation for the velocity vector in an irregular unstruc-
tured mesh cell, it holds that Eq. (9) is a first-order approximation for the change in kinetic
energy within the cells. If the mesh consists of cells of uniform shape and size, then the
approximation becomes second order. In three dimensions, tessellation of space using uni-
form tetrahedra are not possible, so only meshes consisting of uniform pyramids, prisms,
and hexahedra can achieve formal second-order accuracy. Note however that the first-order
errors are related to the nonuniformity of the mesh. If the mesh is relatively smooth, then
the first-order errors are very small and only dominate when the mesh in highly refined. For
practical mesh resolutions and reasonably constructed meshes, the method will appear to
be essentially second-order accurate.

In the continuous case the rotational convection term is perpendicular to the velocity
vector and doesn’t contribute to the kinetic energy equation. The same behavior should also
be true of the discrete equations. To see that this is indeed the case, the summation over
faces is recast into a summation over edges, whereÛ is the normal velocity component



772 ZHANG, SCHMIDT, AND PEROT

oriented counterclockwise with respect to the edge in question:

faces∑
Un+1/2 L f

A f

face
edges∑

ω̂eLeu⊥n+1/2
e · (xe− x∗f )

=
edges∑

ωeLeu⊥n+1/2
e ·

edge
faces∑

(xe− x∗f )
L f

A f
Û n+1/2. (10)

Discrete kinetic energy conservation therefore requires thatu⊥n+1/2
e be perpendicular to∑edge faces

(xe− x∗f )
L f

A f
Û n+1/2. This is most easily arranged by defining the edge velocity as

u⊥n+1/2
e = te× 1

Ae

edge
faces∑

(xe− x∗f )
L f

A f
Û n+1/2, (11)

wherete is the unit tangential vector pointing along an edge andAe is the area of the dual
mesh polygon associated with an edge. It is shown in Section 4 that this is a first-order ap-
proximation for the velocity vector perpendicular to mesh edges (second order on uniform
meshes). This very efficient vector interpolation formula uses only a local communication
stencil and the normal velocity components.

The pressure term can be recast into a summation over cells

−
faces∑

Un+1/2
(

pd
c2− pd

c1

) = cells∑
pd

c

cell
faces∑

Û n+1/2−
boundary

faces∑
Û n+1/2 pd

b

= −
boundary

faces∑
Û n+1/2

(
p+ 1

2
u · u

)
b

, (12)

whereÛ is the normal mass flux (velocity times area) pointing out of the cell in question.
When using Gauss’ divergence theorem it can be seen that1

Vc

∑cell facesÛ is an approxima-
tion for∇ · u in the cell. For the incompressible flows of interest in this work, this constraint
will be forced to machine precision zero in order to compute the pressure, and only the contri-
bution from the boundary faces remains. The first part of Eq. (12) is a discrete version of the
identity−u · (∇ p) = p(∇ · u)−∇ · (up). The last equality shows that both the pressure-
work term and the advection of kinetic energy arise from the dynamic pressure gradient.

The viscous term must be analyzed in two steps. First, the summation over faces is recast
as a summation over edges:

−
faces∑

Un+1/2 L f

A f

face
edges∑

vω̂n+1/2
e Le = −

edges∑
vωn+1/2

e Le

edge
faces∑

Û n+1/2 L f

A f
. (13)

A first-order approximation for the vorticity component along an edge can be obtained by
using Stokes’ Curl theoremωe = 1

Ae

∑edge facesÛ L f

A f
. This approximation is second-order

accurate for uniform meshes and is possible because of the mutual orthogonality of the
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circumcenter dual mesh. However, the expression for the vorticity must be modified for
boundary edges because the faces connected to a boundary edge do not define a complete
circuit around the edge as required by Stokes theorem. So at boundary edges we have

ωe = 1

Ae

edge
faces∑

Û
L f

A f
+ 1

Ae
u⊥e ·

(
xb

f 2− xb
f 1

)
, (14)

wherexb
f 1 is the circumcenter position of the first boundary face touching the boundary edge,

andxb
f 2 is the circumcenter position of the second boundary face (moving counterclockwise

about the edge).
Combining Eqs. (13) and (14) we find that

−
faces∑

Un+1/2 L f

A f

face
edges∑

vω̂n+1/2
e Le

=−
edges∑

vωn+1/2
e LeAeω

n+1/2
e +

boundary
edges∑

vωn+1/2
e Leu⊥e ·

(
xb

f 2− xb
f 1

)
. (15)

The first term on the right-hand side can be recast as a summation over nodes, and the
second term as a summation over boundary faces:

−
faces∑

Un+1/2 L f

A f

face
edges∑

vω̂n+1/2
e Le

= −
nodes∑

v

node
edges∑

ωn+1/2
e ωn+1/2

e
1
2 LeAe+

boundary
faces∑

v

face
edges∑

ω̂n+1/2
e Leu⊥n+1/2

e × (xb
f 2− xb

e

)
.

(16)

While the summation over node edges only involves one component of the vorticity, it
will be shown in Section 4 that this is a second-order approximation on uniform meshes
for the enstrophy in the dual mesh polyhedron surrounding the node. The summation over
boundary face edges in the last term is an approximation for(u× ω) · n f defined previously
for the convective term. Therefore, these two terms are discrete analogs of the last two terms
in Eq. (6).

The final discrete kinetic energy transport equation can be written as

cells∑
Vc

1
2

(
un+1

c

)2− 1
2

(
un

c

)2

1t
+

boundary
faces∑

Û n+1/2

(
1

2
u · u

)
f

= −
boundary

faces∑
Û n+1/2 pb −

nodes∑
v

node
edges∑

ωn+1/2
e ωn+1/2

e
1
2 LeAe

+
boundary

faces∑
v

face
edges∑

ω̂n+1/2
e Leu⊥n+1/2

e · (xb
f 2− xb

e

)
(17)
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if the cell kinetic energy is defined as

Kc = 1

2
(uc)

2 (18)

Then Eq. (17) can be written in a more concise notation which highlights the similarity with
the continuous kinetic energy equation, Eq. (6),

cells∑
Vc

K n+1
c − K n

c

1t
+

boundary
faces∑

Û n+1/2K f

=−
boundary

faces∑
Û n+1/2 pb −

nodes∑
vVnEn+1/2+

boundary
faces∑

vAf (u× ω · n)n+1/2
f , (19)

whereEn+1/2 = 1
Vn

∑node edgesωn+1/2
e ωn+1/2

e
1
2 LeAe is the node enstrophy. If desired, the

summation over nodes could be reapportioned as summation over cells using a volume
weighting. More importantly, this is the only term in the equation that causes a decrease in
the discrete kinetic energy. It is negative semi-definite and the lack of other negative definite
terms implies that no artificial damping of the kinetic energy occurs. The lack of any other
source terms is a weak proof of the numerical stability of the overall solution method. The
kinetic energy conservation property applies to the entire domain (global conservation) and
each individual mesh cell (local conservation). Local kinetic energy conservation is a rare
property of numerical methods, and unknown to the authors in the context of numerical
methods for unstructured meshes, with the exception of the proposed formulation.

Note that the time level of the boundary face pressure and face kinetic energy do not affect
kinetic energy conservation. However, the viscous term must be evaluated at the half-time
level in order to guarantee positive definite dissipation, and the velocity in the convection
term must be evaluated at the half-time level in order for the rotational convection term to
be correctly eliminated from the discrete kinetic energy evolution equation.

3.2. Conservation of Vorticity

Conservation of vorticity is just as critical as kinetic energy conservation in large-
eddy and direct numerical simulations of turbulence. Turbulence is an inherently vortical
phenomenon, and the critical energy transfer among different spatial scales is intimately
connected with three-dimensional vortex stretching. Vorticity is also a critical physical
parameter in many laminar viscous flows, particularly those involving boundary layers,
shear layers, and bluff body separation.

The continuous equation governing the evolution of vorticity is determined by taking the
curl of the momentum equation. The curl operation eliminates the dynamic pressure and
splits the rotational convection into two terms. One represents the convection of vorticity
by the mean flow, and the other represents the increase or decrease of vorticity due to
stretching or contraction of the vortex along its length. Note that the vortex stretching term
is still conservative in the sense that total vorticity is not created or destroyed by this term.
Stretching of a vortex tube increases the vorticity with the tube, but the stretching also
decreases the cross-sectional area of the tube, so that the total vorticity remains the same.
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The equation for vorticity evolution in a constant viscosity, incompressible flow is given
by

∂ω

∂t
+ u · ∇ω = ω · ∇u+∇2(vω). (20a)

Due to the incompressibility of the velocity vector and the vorticity vector, this can be put
into conservative form, which is unambiguously written in Cartesian tensor notation as

∂ωi

∂t
+ (u jωi − ω j ui ), j = (vωi ), j j . (20b)

This section will endeavor to construct the discrete analog of Eq. (20b). The discrete vorticity
equation is constructed by taking the discrete curl of the discrete momentum equation normal
to mesh faces, Eq. (5a), and then interpolating this result (the vorticity equation along edges)
to a vector vorticity equation at mesh nodes.

The modified vorticity along an edge is taken to be ˜ωe = 1
Ae

∑edge facesL f ûint. This is a
slightly different definition for the edge vorticity than used previously in the convection and
diffusion terms, since it employs the mass matrix, but it is equally accurate. The definition
of vorticity must be augmented at boundary edges, but boundary edges will be ignored for
the present. The equation for the evolution of the discrete vorticity along interior edges is
then

Ae
ω̃n+1

e − ω̃n
e

1t
+

edge
faces∑

L f ĉ f = −
edge
faces∑

L f d̂ f , (21)

where cf = − 1
A f

∑face edges
ω̂eLeu⊥e · (xe− x∗f ) is the rotational convection term and

df = 1
A f

∑face edges
vω̂Le is the rotational diffusion term. The hat on each term indicates

that the term is evaluated in the direction counterclockwise to the edge in question. As in the
continuous case, the pressure term has been eliminated. The fact that a discrete curl can be
defined which identically zeros any gradient terms is another property of the unstructured
staggered mesh methods related to the local orthogonality of the circumcenter dual mesh.

The equation for edge vorticity components is transformed into an equation for the
discrete vorticity vector evolution by employing an interpolation to the mesh nodes

node
edges∑(

xCG
e − xn

)
Ae
ω̃n+1

e − ω̃n
e

1t
+

node
edges∑(

xCG
e − xn

) edge
faces∑

L f (ĉ f + d̂ f ) = 0, (22)

where the edges are assumed to point away from the node in question, andxCG
e is the position

of the center of gravity of the dual mesh polygon associated with the edge (see Fig. 1b). It is
shown in Section 4 that1Vn

∑node edges
(xCG

e − xn)Aeω̃e is a first-order approximation for the
vorticity vector at the nodes (second order on uniform meshes). So the first term of Eq. (22)
becomes an approximation for the change in time of the vorticity vector. The second term,
involving the convection and diffusion, requires more consideration, particularly in three
dimensions. It simplifies as

node
edges∑(

xCG
e − xn

)edge
faces∑

L f (ĉ f + d̂ f ) =
node
faces∑[(

xCG
e1 − xn

)− (xCG
e2 − xn

)]
L f (ĉ f + d̂ f ),

(23)
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where(ĉ f + d̂ f ) points counterclockwise with respect to edge 1, and all edges point away
from the node in question. The important consideration is that each face has exactly two
edges which touch a particular node and the node position therefore cancels out. Substituting
the face position for node position and reformulating back to a summation over node edges
gives

node
faces∑[(

xCG
e1 − x∗f

)− (xCG
e2 − x∗f

)]
L f (ĉ f + d̂ f ) = −

node
edges∑ edge

faces∑[(
x∗f − xCG

e1

)]
L f (ĉ f + d̂ f ).

(24)

The last summation is a first-order approximation of the convection and diffusion terms
interpolated to the edges and lying in the plane perpendicular to the edge. The normal
component of convection and diffusion cannot be determined from neighboring face infor-
mation, which is entirely perpendicular to the edge. Interestingly, it is also not necessary.
The same interpolation was used to determine the velocity vector at the edges for use in
the convection term. With this transformation, it is possible to write the equation for the
discrete vorticity vector at a node as

Vn
ωn+1

n − ωn
n

1t
+

node
edges∑

te× c⊥e Ae = −
node
edges∑

te× d⊥e Ae, (25)

wherete is the unit vector pointing outward along the edge, andc⊥e andd⊥e are first-order
approximation to the vector convection and diffusion terms interpolated to the edges and
lying in the plane perpendicular to the edge.

In the case of convection,c= ω × u andc⊥e = te× (ωeu⊥e − ω⊥e ue), so

te× c⊥e = −ωeu⊥e + ueω
⊥
e = −(ωeu⊥e + ωeteue)+ (ueω

⊥
e + ωeteue) = −ωeue+ ueωe,

(26)

whereωe is the vorticity along the edge,u⊥e is the velocity in the plane perpendicular to
the edge,ue is the velocity component along the edge, andω⊥e is the vorticity in the plane
perpendicular to the edge. This form of the convection term is equivalent to the convection
term found in the continuous vorticity equation, Eq. (20b).

The diffusion term isd = ∇ × vω. If for simplicity we assume the viscosity to be
constant, then

1

v

(
te× d⊥e

) = −∂ω⊥
∂n
+ (∇ωe)

⊥ = −∂ω
⊥

∂n
− ∂(nωe)

∂n
+ (∇ωe)

⊥ + ∂(nωe)

∂n

= −∂ω
∂n
+ (∇ωe), (27)

where(∇ωe)
⊥ is the gradient of the outward pointing vorticity component in the plane

perpendicular to the edge. The first equality can be obtained by hypothesizing an orthogonal
coordinate system aligned with the edge so thatte = (0, 0, 1) andd⊥e = ( ∂ωe

∂t2
− ∂ω2

∂n ,
∂ω1
∂n −

∂ωe
∂t1
, 0). The final expression is equivalent to−(ωi, j − ω j,i )nj in Cartesian tensor notation.

The first part constitutes the standard diffusion term. When multiplied by the edge area and



A THREE-DIMENSIONAL STAGGERED MESH SCHEME 777

summed over the node edges the second part is equivalent to(ω j,i ), j which is identically
zero. It is unlikely that this term will be identically zero in the discrete implementation but
it still constitutes a flux term and will not affect conservation.

In summary, the vorticity evolution equation (Eq. (25)) can be written as

Vn
ωn+1

n − ωn
n

1t
+

node
edges∑

Ae[ûeωe− ω̂eue] =
node
edges∑

Aev

[
∂ω

∂n̂
− (∇ω̂e)

]
, (28)

which is the discrete equivalent of Eq. (20b). It indicates that the unstructured staggered
mesh discretization of the rotational form the Navier–Stokes equations is identical to a
particularunstaggeredcontrol volume discretization of the vorticity evolution equation. As
a result, the method conserves vorticity. Note however that the method differs from standard
vorticity evolution methods in two very fundamental ways. First, boundary conditions are
imposed on the primative variables, not the vorticity. Second, the vorticity is a derived
quantity, not a fundamental quantity.

The relevant control volumes for the vorticity evolution equation are no longer the original
mesh cells, but rather the associated Veronio dual control volumes associated with the
mesh nodes, and the vorticity vector is defined at mesh nodes, not at cell centers. The
exact discretization of the convection term and its associated variables (such asue) is not
important for vorticity conservation. However, it was shown previously that kinetic energy
conservation is closely tied to the specific definitions of these variables.

The analysis presented above is for interior nodes. It is clear that a similar analysis can
be performed on boundary nodes as long as the dual mesh polygonal volume surrounding
a boundary node is supplemented by the appropriate boundary information.

Global vorticity conservation is a direct consequence of the fact that the convective and
diffusive vorticity fluxes at interior edges are equal and opposite for the two nodes touching
each edge. Consequently, the contributions from all edges cancel out, and only the boundary
information associated with boundary nodes remains.

4. ACCURACY

In this section, the accuracy of the various unstructured staggered mesh approximations
is evaluated. Determining accuracy of discrete operations on arbitrary unstructured meshes
is extremely difficult to do using Taylor series expansions. This is particularly true of the
operators described in this work which use minimal neighbor information and require ex-
tensive cancellation of large errors due to the neglected terms. There are a host of geometric
identities which must be known and appropriately utilized. The use of staggering and the
highly unintuitive nature of many of the proposed approximations makes the task of ana-
lyzing accuracy even more complex. The standard finite element practice of showing that
the solution lies in a function space of piecewise polynomials of a certain order is not
straightforward either. We choose therefore to approach the issue of accuracy from a rather
unusual viewpoint, relying heavily on fundamental integral relations of multidimensional
calculus such as Gauss’ divergence theorem and Stokes curl theorem. This section should
make it clear that this novel approach is a useful tool in the analysis of unstructured mesh
accuracy.
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4.1. Rotational Convection Term

This section analyses the accuracy of the approximation for the rotational convection
term normal to the face,(ω × u) · n f . A similar, but two-dimensional analysis is found in
Ref. [3]. We begin with Stokes theorem applied to the vector quantity [u · (x− x0)]ω where
u is the velocity vector,ω is the vorticity vector,x is position, andx0 is an arbitrary origin
for the position∫

S

∇ × {[u · (x− x0)]ω} · n d A=
∫
∂S

[u · (x− x0)](ω · t̂) dL, (29)

whereSis a surface with normaln, and∂Sis the boundary of the surface with unit tangential
vector t̂ oriented in a counterclockwise direction around the boundary with respect to the
face normal.

The surfaces of interest in this case are the faces of the mesh, and the boundary of this
surface is the edges that form the face. Since the face normal does not change and the edges
are linear, the integral can be rewritten as a summation of the line integral along each edge:

n f ·
∫

face

∇ × {[u · (x− x0)]ω} d A=
face

edges∑
t̂e ·

∫
edge

ω[u · (x− x0)] dL. (30)

In Cartesian tensor notation, the left-hand side of this equation can be simplified as

ni

∫
S

εi jk (usrsωk), j d A= ni

∫
S

εi jk [usωkrs, j + rs(usωk), j ] d A

= ni

∫
S

εi jk [u jωk + rs(usωk), j ] d A, (31)

wherer = x− x0 is the relative position vector, and the identity that the gradient of the
position vector is the identity matrix (rs, j = δs j) has been used. Using the previous notation
thatω̂e is the vorticity component oriented along an edge and counterclockwise to the face
we can write

−n f ·
∫
s

ω × u d A+ ni

∫
s

εi jk rs(usωk), j d A=
face
edges∑ ∫

edge

ω̂e[u · r ] dL. (32)

Note that this is an exact equation. The second term cannot be unambiguously written in
vector notation so it has been left in Cartesian tensor notation.

If we make the first-order assumption that the velocity fieldu and the vorticity fieldω
are constant along the face and the edges, then the second term is zero and the integrals can
be evaluated to give

A f (ω × u) f · n f = −
face

edges∑
Leω̂eue · {xe− x0} = −

face
edges∑

Leω̂eue · {xe− x̃ f }, (33)
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where the position origiñx f is arbitrary for each face and need not even lie on the face
itself. For conservation of kinetic energy it was shown thatx̃ f is not arbitrary and must be
the midpoint between neighboring cell circumcenters. Using first-order approximations for
the velocity and the edge tangential vorticity will not affect the first-order accuracy of the
approximation.

4.2. Edge Velocity

The formula for the velocity in the plane perpendicular to the edge is also derived via the
Stokes theorem. In this case we consider the vector(a · r̃)u wherer̃ = n× (x− x0), u is
the velocity vector,n is the surface normal vector,x is position, andx0 is an arbitrary origin
for the position. ∫

S

∇ × {(a · r̃)u} · n d A=
∫
∂S

(a · r̃)(u · t̂) dL, (34)

where S is a surface and∂S is the boundary of the surface with unit tangential vector
t̂ oriented in a counterclockwise direction around the boundary with respect to the face
normal.

However, unlike the surfaces of interest in the previous case, the surface of interest for
the edge velocity is the dual mesh edge area. This area surrounding an edge has a normal
vector andte and unit tangential vectors pointing along is periphery which aren̂ f —one for
each face touching the edge:

te ·
∫

edge

∇ × {(a · r̃)u} d A=
edge
faces∑

n̂ f ·
∫

face

u(a · r̃) dL. (35)

Note that the edge integral is an integral over the plane perpendicular to the edge, and the
face integrals are line integrals over the lines connecting neighboring cell circumcenters.

In Cartesian tensor notation, the left-hand side of this equation is written as

ti

∫
S

εi jk (asεsnptnr puk), j d A=
∫
S

εi jkεsnpasti tn[ukr p, j + r puk, j ] d A

=
∫
S

[ε jki ε jsnasti tnuk + εsnpasti tnr pωi ] d A

=
∫
S

[(δksδin − δknδis)asti tnuk + asti r̃sωi ] d A

=
∫
S

as[us − tstnun + ti r̃sωi ] d A. (36)

Using the fact thata is an arbitrary constant vector, we can now write that

∫
edge

[u− t(t · u)+ r̃(t · ω)] d A=
edge
faces∑ ∫

face

(n̂f · u)r̃ dL. (37)
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Since the surface in question is planar the normal vector,t, is constant, and

∫
edge

[u⊥ + r̃(t · ω)] d A= t ×
edge
faces∑ ∫

face

(n̂f · u)r dL, (38)

whereu⊥ is the velocity vector in the edge plane. If the velocity is constant on the face,
then

u⊥e Ae = te×
edge
faces∑

L f û(x∗f − xe). (39)

The second term on the left-hand side of Eq. (38) can also be eliminated by choosing the
arbitrary position origin to be the center of gravity of the edge polygon. This gives a second-
order approximation for the velocity vector at the edge polygon’s center of gravity, but this
is still a first-order approximation to the velocity at the edge itself.

The interpolation of a vector quantity from its face components has also been described
by Shashkovet al. [13] and Hyman and Shashkov [14] in the context of two-dimensional
distorted Cartesian meshes.

4.3. Node Enstrophy

The enstrophy (vorticity squared) is a quantity which is similar to the kinetic energy
(velocity squared). The derivation resembles the two-dimensional formula for kinetic energy
found in Ref. [13]. The primary difference is that kinetic energy is located at cell centers
and enstrophy is located at mesh nodes (cell corners). The derivation starts with Gauss’
divergence theorem applied on the dual mesh volume surrounding a node:∫

V

∇ · {(ω · r)ω} dV =
∫
∂V

(ω · r)(ω · n) d A, (40)

whereV is a volume,∂V is the surface of the volume with outward pointing normal vector
n, andr = x− x0 is the position vector relative to an arbitrary origin.

In Cartesian tensor notation, the left-hand side of this equation is written as∫
V

(ωpr pωk),k dV =
∫
V

(ωpr p,k + ωp,kr p)ωk dV =
∫
V

(ωk + ωp,kr p)ωk dV. (41)

Assuming a constant vorticity in the volume gives the relation

(ω · ω)Vn =
node
edges∑{

ω · (xCG
e − xn

)}
ω̂eAe, (42)

whereω̂e is the vorticity component along the edge and pointing away from the node. The
edge positionxe is taken to be halfway between two nodes, and is not the same as the
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center of gravity of the edge polygon,xCG
e . Reformulating based on the edge position gives

a position vector that is normal to the edge polygon,

(ω · ω)Vn =
node
edges∑ {

ω · (xCG
e − xe

)+ ω · (xe− xn)
}
ω̂eAe

=
node
edges∑

ω · (xCG
e − xe

)
ω̂eAe+

node
edges∑

ωeωeAe
1

2
Le. (43)

The second term on the right-hand side is the expression appearing in the kinetic energy
conservation equation as the expression for volume weighted enstrophy. This remarkable
expression says that the volume weighted average of just the edge vorticity magnitude
squared is sufficient to give us the entire enstrophy at the node. Note, however, that the
volume weights sum to a total of three not to the standard value of unity.

The first term on the right-hand side is not zero for a single node in a general nonuniform
mesh. In that case this term should properly be included in the viscous flux term in the
kinetic energy equation (final term in Eq. (15)). However, if we sum over all nodes in the
mesh (for the total enstrophy) this term cancels out at every edge connecting two nodes and
leaves no net contribution (even at the boundaries). The cancellation is a result of the fact
that this is a flux term. Note that a similar contribution will be obtained from each node
touching a particular edge, but the value of ˆωe is equal and opposite for each of the two
nodes (since it always points outward). Since all other values are identical at the two-node,
contributions at an edge will exactly cancel. And since every edge has exactly two nodes
associated with it, the final result is complete cancellation of the second term of Eq. (43) if
we consider a complete mesh not just a single node. The mesh in question could consist of
a single cell if so desired.

4.4. Node Vorticity Vector

The formula for the vorticity vector at nodes is also a product of Gauss’ divergence
theorem applied to the dual mesh control volume surrounding the node. In this case, we
start with ∫

V

∇ · {(a · r)ω} dV =
∫
∂V

(a · r)(ω · n) d A, (44)

where the vectora is an arbitrary constant vector. In Cartesian tensor notation the left-hand
side of this equation is written as∫

V

(apr pωk),k d A=
∫
V

apr p,kωk d A=
∫
V

akωk d A. (45)

Sincea is arbitrary, this becomes

ωnVn =
node
edges∑ (

xCG
e − xn

)
ω̂eAe (46)
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if we assume that vorticity is constant in the dual mesh control volume. This is a first-order
approximation for the vorticity vector at the node given the vorticity component along the
edges. Any first-order approximation for the vorticity component along the edges can be
used and the expression remains first order. A similar approximation is used to compute the
velocity vector in cells from the face normal velocity components.

5. NUMERICAL TESTS OF CONSERVATION AND ACCURACY

In order to test the conservation properties of these schemes a problem was chosen
that has zero mass flux at the boundaries, but is inherently unsteady. The initial flow field
of this problem involves a Rankine vortex located in the bottom left quadrant of a box.
Although the problem is tested in a 3D domain (1.0 m× 1.0 m× 0.1 m) and using an
unstructured tetrahedral mesh, it is a two-dimensional flow since the motion only occurs
in X–Y plane and only the z-component of the vorticity vector is not zero. The domain
is meshed with 7578 tetrahedra. The viscosity of the fluid is 0.01 m2/s and the maximum
initial velocity magnitude is 0.16 m/s. The initial tangential velocity reaches its maximum
at radius R= 0.01 m for an initial circulation Reynolds number of 1. The initial velocity
profile and computational mesh are shown in Figs. 2 and 3. All the boundaries are slip walls.

5.1. Conservation of Kinetic Energy

The discrete kinetic energy within each mesh cell was calculated at every time step using
Eq. (18). The total discrete kinetic energy was then evaluated by calculating the volume
weighted sum over all the cell kinetic energies,

KEtotal =
cells∑

VcKc.

Since there is no flow across the domain boundaries, the change of this quantity with time
is only due to the effect of dissipation.

In numerical tests of the vortex motion in the absence of viscosity, the total discrete
kinetic energy remained constant to within six significant digits after 5000 time steps
(0.05 seconds). This is about as constant as can be expected given the tolerance prescribed
for the iterative solver. When viscosity is present (0.01 m2/s), the total discrete kinetic energy
as a function of time is shown in Fig. 4a. The rate of change of the kinetic energy obtained

FIG. 2. Two-dimensional Rankine vortex. (a) Tangential velocity vs. radius. (b) Streamlines.
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FIG. 3. Three-dimensional domain and surface mesh for the vortex test problem.

by differentiating this curve is compared with the calculated physical dissipation. A perfect
match is shown in Fig. 4b. This test indicates that the theoretical analysis of Section 3.2 is
well-founded and that there is no artificial dissipation in the method.

5.2. Conservation of Vorticity

The discrete vorticity within each mesh cell was calculated at every time step. The total
discrete vorticity was then evaluated by calculating the volume weighted sum over all the
individual node vorticity values,

Ωtotal =
nodes∑

Vnωn.

Since there is no flow across the domain boundaries, and the diffusive vorticity flux is zero
at the domain boundaries, this quantity should be constant, even in the presence of viscosity.

FIG. 4. Kinetic energy conservation test. (a) Total kinetic energy vs. time. (b) Rate of change of kinetic energy
versus time (solid line) and total physical dissipation versus time (circles) forv = 0.01 m2/s.
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In this numerical test, the initial total vorticityz-component is−0.00033 (sec−1); all
other components are zero. Final result shows that this scheme conserves the vorticity to
three significant digits after the solution has evolved for 0.05 seconds (5000 time steps,
roughly one vortex revolution), which is again all that can be expected given the solution
tolerances of the iterative solver and the fact that vorticity has higher errors associated with
it than the velocity.

5.3. Conservation of Momentum

The discrete velocity (momentum) within each mesh cell was calculated at every time
step using Eq. (4). The total discrete velocity was then evaluated by calculating the volume-
weighted sum over all the individual cell velocity values,Utotal =

∑cells Vcuc. Since there
is no flow across the domain boundaries, and because we are using slip walls, this quantity
should remain constant even in the presence of viscosity.

It was found that the proposed discretization conserved the totalx-, y-, andz-momentum
to machine precision. In this problem, thez-component velocity is always zero and thex-
andy-components are symmetric about vortex axis, thus the initial total momentum is zero.
The result shows that these three components remain zero (to machine procession) after
5000 time steps. The global conservation of momentum of the rotational discretization was
not shown analytically in the text, but was determined to be a result of the fact that the
streamfunction on the boundaries does not change with time.

5.4. Numerical Tests of Accuracy

This section confirms the accuracy assessments of the preceding sections using a series
of numerical tests. In each case, a sinusoidal function is assigned to the input variables.
The exact solution is computed analytically and the approximate solution is computed
numerically using the approximations described in the text. Rather than changing the mesh
size, which is a cube (1.0 m× 1.0 m× 1.0 m) meshed with 8838 tetrahedra (shown in
Fig. 5), mesh refinement has been performed by changing the wavelength of the input sine
functions. Small wavelengths are equivalent to a coarse mesh solution.

The stream function was set to be12πN sin(2πN x) cos(2πN y)Ek. Exact velocities and
vorticity were then derived from this streamfunction. The maximum velocity magnitude is

FIG. 5. Surface mesh for the accuracy tests.
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FIG. 6. Error in the edge velocity interpolation.

unity. The average mesh volume was calculated first, and then the average mesh spacing,
1Xavg, was taken to be3

√
3.0∗Vavg and was found to be 0.07. The effective length of the

domain is 1.0/N, whereN is a variable integer value. Larger values ofN correspond to a
coarser effective mesh. The relative mesh size is defined to be1Xavg/Leff = 0.07∗ N. So a
relative mesh size of 1 corresponds to roughly 14 cells per wavelength. The error defined in
this accuracy test is the root square mean error. Figure 6 shows the accuracy of the proposed
velocity interpolation, Eq. (39), to the mesh edges. Triangle symbols are the error in the
x-component of velocity, circles are the error in they-component, and crosses are the error in
thez-component. The dashed lines represent the error in the velocity interpolation required
by the standard rotational form (described in Perot [3]) in which the formula is similar to
Eq. (39) butx∗f is replaced byxcc

f . For coarse meshes, the error of the standard scheme is

FIG. 7. Error in convection term. (a) Error versus relative mesh size. (b) Log scaling.
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FIG. 8. Error in node vorticity. (a) Error versus mesh size. (b) Log scaling.

slightly smaller than the velocity interpolation described in this work (Eq. 39), but as the
mesh is refined, it does not converge to zero. The solid lines are the current interpolation
scheme, which is shown to be first-order accurate.

The approximation for the convective term is was tested by assuming exact vorticity
and velocity at the mesh edges, and using Eq. (33) to calculate the normal component of
ω × u at the faces. The convective term interpolation, as shown in Fig. 7, is second-order
accurate. Figure 8 shows the accuracy of the vorticity vector interpolation, Eq. (46), to the
nodes. Sincex- and y-components are zero to machine procession, only the accuracy of
thez-component vorticity is plotted. Second-order accuracy is clearly shown in the figure.
Figure 9 shows the accuracy of total node enstrophy interpolation. Second-order accuracy
is achieved when Eq. (43) is used to calculate the total enstrophy. The mesh used in this
test is a nearly uniform one as can be seen in the surface mesh shown in Fig. 5. On a highly
nonuniform mesh we would expected to see first-order accuracy for these interpolations.

6. DRIVEN-CAVITY PROBLEM

The driven-cavity problem was chosen to test the validity of this scheme for actual fluid
simulation. The computational domain and mesh are the same as that used in the conservation
properties tests of Section 5. As shown in Fig. 10, the top lid is moving with a constant

FIG. 9. Error in enstrophy. (a) Error vs. mesh size. (b) Log scaling.
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FIG. 10. Driven cavity problem.

x-component velocity (U = 0.001 m/s). Left, bottom, and right boundaries are solid walls.
The front and back are slip walls. The viscosity of the fluid is 10−5 m2/s. The Reynolds
number defined as Re= U L

v
is 100. After 20,000 time steps (2000 s), a steady solution

is achieved. While the underlying solution is essentially two-dimensional so that it can
easily be compared with other solution methods, the underlying numerical scheme is fully
unstructured and three-dimensional, and does not take advantage of two-dimensionality in
any way. Figure 11a shows thex-component velocity as a function ofy through the center.
Figure 11b shows they-component velocity as function ofx through the center. In both
figures, data were extracted from the symmetrical planez= 0.05.

In Fig. 11, solid lines represent the simulation results and circles represent the results
from Ref. [15], in which a more refined structured Cartesian mesh is used. Given that this
tetrahedra mesh has a spacing roughly equivalent to a 30× 30 Cartesian mesh, the results
are quite acceptable. Figure 12 shows the velocity vectors on the symmetry planez= 0.5
of the steady solution. The location of the primary vortex center predicted by this scheme is
(0.652, 0.717) which is reasonably close to (0.617, 0.734), the location predicted by [15].
Furthermore, by carefully studying the streamlines obtained from the integration of velocity

FIG. 11. Velocity profile of the driven cavity problem. (a)U velocity profile on vertical line through the center
(b) V velocity profile on horizontal line through the center.
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FIG. 12. Velocity vector plots for cavity flow at Re= 100.

vectors, we found that a small vortex at the right bottom corner was successfully captured
(not seen in the figure) even though the mesh is relatively coarse. Due the resolution of the
mesh, an even smaller vortex at the left bottom corner predicted by Ref. [15] is not captured.

7. CONCLUSIONS

The Cartesian staggered mesh scheme of Harlow and Welch [1] remains a popular scheme
for the solution of the incompressible Navier–Stokes equations to this day. This is per-
haps because the scheme displays a remarkable number of very attractive mathematical,
physical, and practical properties. This work presents a generalization of the staggered
mesh scheme to general unstructured three-dimensional meshes that displays many of these
same mathematical, physical, and practical attributes. It requires low memory storage, uses
very compact interpolation and discretization operators, and conserves important physical
parameters beyond the primary discretization variables. The accuracy of the unstructured
implementation is equivalent to the standard Cartesian staggered mesh method—first order
on arbitrary meshes but effectively second order on reasonably smooth meshes and practical
mesh sizes.

Other unstructured staggered mesh schemes exist in the literature [16, 17], even for
three-dimensional problems [18–20]. These methods can differ in numerous ways but the
fundamental differences appear to be in how vectors (particularly velocity) are interpolated
from component information and what form of the Navier–Stokes equations the discretiza-
tion is based on. This work describes a number of novel interpolation schemes and describes
how they lead to conservation properties. It also describes a discretization based on the rota-
tional form of the Navier–Stokes equations whereas all other previous work has focused on
discretizations starting from the divergence form of the governing equations. It is entirely
possible that other interpolations and other schemes also display conservation properties.
Previous work [3] shows that this is certainly the case in two dimensions. It is hoped that
the new methods for analyzing accuracy and conservation that are developed in this work
will aid in the analysis of other unstructured staggered mesh methods.
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The fact that this method can be shown to be equivalent to an unstaggered control vol-
ume discretization of the vorticity equation (Section 3.2) suggests that it is closely related
to streamfunction–vorticity or velocity–vorticity methods. There is a strong connection,
but also some very fundamental differences. The present formulation poses all boundary
conditions on the velocity or the pressure. Unlike streamfunction–vorticity methods, bound-
ary conditions on the vorticity or the streamfunction are not required. In addition, because
the method really only advances the component of vorticity along mesh edges, the cost of
the method does not triple when going from two dimensions to three dimensions, as is the
case with standard streamfunction–vorticity methods. The underlying reason for these very
significant differences is because the vorticity vector is a derived, rather than a primary
variable. Alternatively, the distinction is the fact that the equations were discretized first
and then manipulated into a vorticity-like form, rather than analytical manipulation of the
exact equations into a vorticity equation followed by discretization.

The major limitations of the proposed scheme are its low-order accuracy (effectively
second order), and the reliance on cell circumcenters and the local orthogonality properties
of the Delaunay dual mesh. Current research is directed toward increasing the accuracy
of the discrete operators, and allowing the use of nonorthogonal dual meshes such as the
median dual mesh which connects cell and face centroids.

APPENDIX

A variety of methods is available to calculate center of gravity (centroid) and circumcenter
locations. The best choice is largely determined by the available data structures and mesh
connectivity information. In this work, we use methods that can be applied to an arbitrary
mesh configuration. The center of gravity of a face is calculated as the area weighted sum
of the center of gravity of each subtriangle formed by the face edge and a central point on
the face (which is arbitrary). The formula is

xCG
f =

1

Af

face
edges∑ 1

2
LeL⊥ef

(
1

3
x f + 2

3
xe

)
= 1

3
x f + 2

3

face
edges∑ Aef

A f
xe, (A1)

whereLef = |te× (xe− x f ) · n f | is the perpendicular distance from the edge to the central
point on the face. The center of gravity for the cell is calculated similarly, using subtetrahedra
associated with each face,

xCG
c =

1

Vc

cell
faces∑ 1

3
Af L⊥f c

(
1

4
xc + 3

4
xCG

f

)
= 1

4
xc + 3

4

cell
faces∑ Vf c

Vc
xCG

f , (A2)

whereL⊥f c = |(xc − xCG
f ) · n f | is the perpendicular distance from the face to the central

point in the cell.
Explicit formulas exist for finding the circumcenter of a triangle or a tetrahedron, but

these formulas do not generalize to an arbitrary mesh (such as rectangles), which might still
have well-defined circumcenters. For this reason, iterative methods are used to find the face
and cell circumcenters. These methods are based on the property that the face circumcenter
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is located perpendicular to the edge midpoints. The iteration is based on the formula

xCC
f = xCC

f + α
face

edges∑
te
(
xCC

f − xe
) · te, (A3)

whereα is a convergence parameter usually set to 1. The convergence is quite rapid, usually
taking less than five iterations. The iterative formula for cell circumcenter position is similar:

xCC
c = xCC

c + α
cell

faces∑ {(
xCC

c − xCC
f

)− n f
(
xCC

c − xCC
f

) · n f
}
. (A4)

This formula converges equally rapidly. The formulas are applicable to arbitrary meshes,
even those without well-defined circumcenters. If a circumcenter does not exist, local
orthogonality will not be achieved by these locations, which is an easy check on the mesh.
The algorithm will still work on such a mesh without local orthogonality but accuracy and
conservation properties are unlikely to continue to apply.
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